Skip to main content
Log in

From genetics to epigenetics: the tale of Polycomb group and trithorax group genes

  • Published:
Chromosome Research Aims and scope Submit manuscript

An Erratum to this article was published on 14 September 2006

Abstract

The Polycomb gene was discovered 60 years ago as a mutation inducing a particular homeotic phenotype. Subsequent work showed that Polycomb is a general repressor of homeotic genes. Other genes with similar function were identified and named Polycomb group (PcG) genes, while trithorax group (trxG) genes were shown to counteract PcG-mediated repression of homeotic genes. We now know that PcG and trxG proteins are conserved factors that regulate hundreds of different genomic loci. A sophisticated pathway is responsible for recruitment of these proteins at regulatory regions that were named PcG and trxG response elements (PRE and TRE). Once recruited to their targets, multimeric PcG and trxG protein complexes regulate transcription by modulating chromatin structure, in particular via deposition of specific post-translational histone modification marks and control of chromatin accessibility, as well as regulation of the three-dimensional nuclear organization of PRE and TRE. Here, we recapitulate the history of PcG and trxG gene discovery, we review the current evidence on their molecular function and, based on this evidence, we propose a revised classification of genes involved in PcG and trxG regulatory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akam M (1987) The molecular basis for metameric pattern in the Drosophila embryo. Development 101: 1–22.

    PubMed  CAS  Google Scholar 

  • Badenhorst P, Voas M, Rebay I, Wu C (2002) Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev 16: 3186–3198.

    Article  PubMed  CAS  Google Scholar 

  • Bantignies F, Goodman RH, Smolik SM (2000) Functional interaction between the coactivator drosophila CREB-binding protein and ASH1, a member of the trithorax group of chromatin modifiers. Mol Cell Biol 20: 9317–9330.

    Article  PubMed  CAS  Google Scholar 

  • Bantignies F, Grimaud C, Lavrov S, Gabut M, Cavalli G (2003) Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev 17: 2406–2420.

    Article  PubMed  CAS  Google Scholar 

  • Beisel C, Imhof A, Greene J, Kremmer E, Sauer F (2002) Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419: 857–862.

    Article  PubMed  CAS  Google Scholar 

  • Beuchle D, Struhl G, Muller J (2001) Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128: 993–1004.

    PubMed  CAS  Google Scholar 

  • Birve A, Sengupta AK, Beuchle D et al. (2001) Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development 128: 3371–3379.

    PubMed  CAS  Google Scholar 

  • Blastyak A, Mishra RK, Karch F, Gyurkovics H (2006) Efficient and specific targeting of Polycomb group proteins requires cooperative interaction between Grainyhead and Pleiohomeotic. Mol Cell Biol 26: 1434–1444.

    Article  PubMed  CAS  Google Scholar 

  • Breiling A, Turner BM, Bianchi ME, Orlando V (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412: 651–655.

    Article  PubMed  CAS  Google Scholar 

  • Brown JL, Mucci D, Whiteley M, Dirksen ML, Kassis JA (1998) The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1: 1057–1064.

    Article  PubMed  CAS  Google Scholar 

  • Brown JL, Fritsch C, Mueller J, Kassis JA (2003) The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 130: 285–294.

    Article  PubMed  CAS  Google Scholar 

  • Byrd KN, Shearn A (2003) ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci USA 100: 11535–11540.

    Article  PubMed  CAS  Google Scholar 

  • Cao R, Wang L, Wang H et al. (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  • Cao R, Tsukada YI, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20: 845–854.

    Article  PubMed  CAS  Google Scholar 

  • Cavalli G, Paro R (1998) The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93: 505–518.

    Article  PubMed  CAS  Google Scholar 

  • Chan CS, Rastelli L, Pirrotta V (1994) A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J 13: 2553–2564.

    PubMed  CAS  Google Scholar 

  • Chinwalla V, Jane EP, Harte PJ (1995) The Drosophila trithorax protein binds to specific chromosomal sites and is co-localized with Polycomb at many sites. EMBO J 14: 2056–2065.

    PubMed  CAS  Google Scholar 

  • Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111: 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Daubresse G, Deuring R, Moore L et al. (1999) The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. Development 126: 1175–1187.

    PubMed  CAS  Google Scholar 

  • DeCamillis M, Cheng NS, Pierre D, Brock HW (1992) The polyhomeotic gene of Drosophila encodes a chromatin protein that shares polytene chromosome-binding sites with Polycomb. Genes Dev 6: 223–232.

    PubMed  CAS  Google Scholar 

  • Dejardin J, Cavalli G (2004) Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module. EMBO J 23: 857–868.

    Article  PubMed  CAS  Google Scholar 

  • Dejardin J, Rappailles A, Cuvier O et al. (2005) Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 434: 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Dellino GI, Schwartz YB, Farkas G, McCabe D, Elgin SC, Pirrotta V (2004) Polycomb silencing blocks transcription initiation. Mol Cell 13: 887–893.

    Article  PubMed  CAS  Google Scholar 

  • Duncan IM (1982) Polycomblike: a gene that appears to be required for the normal expression of the bithorax and antennapedia gene complexes of Drosophila melanogaster. Genetics 102: 49–70.

    PubMed  CAS  Google Scholar 

  • Duncan IW (2002) Transvection effects in Drosophila. Annu Rev Genet 36: 521–556.

    Article  PubMed  CAS  Google Scholar 

  • Farkas G, Gausz J, Galloni M, Reuter G, Gyurkovics H, Karch F (1994) The Trithorax-like gene encodes the Drosophila GAGA factor. Nature 371: 806–808.

    Article  PubMed  CAS  Google Scholar 

  • Faucheux M, Roignant JY, Netter S, Charollais J, Antoniewski C, Theodore L (2003) batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor. Mol Cell Biol 23: 1181–1195.

    Article  PubMed  CAS  Google Scholar 

  • Fauvarque M-O, Dura J-M (1993) polyhomeotic regulatory sequences induce develpomental regulator-dependent variegation and targeted P-element insertions in Drosophila. Genes Dev 7: 1508–1520.

    PubMed  CAS  Google Scholar 

  • Francis NJ, Saurin AJ, Shao Z, Kingston RE (2001) Reconstitution of a functional core polycomb repressive complex. Mol Cell 8: 545–556.

    Article  PubMed  CAS  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL (2004) Chromatin compaction by a polycomb group protein complex. Science 306: 1574–1577.

    Article  PubMed  CAS  Google Scholar 

  • Franke A, DeCamillis M, Zink D, Cheng N, Brock HW, Paro R (1992) Polycomb and polyhomeotic are constituents of a multimeric protein complex in chromatin of Drosophila melanogaster. EMBO J 11: 2941–2950.

    PubMed  CAS  Google Scholar 

  • Fritsch C, Beuchle D, Muller J (2003) Molecular and genetic analysis of the Polycomb group gene Sex combs extra/Ring in Drosophila. Mech Dev 120: 949–954.

    Article  PubMed  CAS  Google Scholar 

  • Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT (2004) Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev 18: 170–183.

    Article  PubMed  CAS  Google Scholar 

  • Gabellini D, Green MR, Tupler R (2002) Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110: 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Gildea JJ, Lopez R, Shearn A (2000) A screen for new trithorax group genes identified little imaginal discs, the Drosophila melanogaster homologue of human retinoblastoma binding protein 2. Genetics 156: 645–663.

    PubMed  CAS  Google Scholar 

  • Grimaud C, Bantignies F, Pal-Bhadra M, Ghana P, Bhadra U, Cavalli G (2006) RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124: 957–971.

    Article  PubMed  CAS  Google Scholar 

  • Hagstrom K, Muller M, Schedl P (1997) A Polycomb and GAGA dependent silencer adjoins the Fab-7 boundary in the Drosophila bithorax complex. Genetics 146: 1365–1380.

    PubMed  CAS  Google Scholar 

  • Holdeman R, Nehrt S, Strome S (1998) MES-2, a maternal protein essential for viability of the germline in Caenorhabditis elegans, is homologous to a Drosophila Polycomb group protein. Development 125: 2457–2467.

    PubMed  CAS  Google Scholar 

  • Huang DH, Chang YL (2004) Isolation and characterization of CHRASCH, a polycomb-containing silencing complex. Methods Enzymol 377: 267–282.

    PubMed  CAS  Google Scholar 

  • Huang DH, Chang YL, Yang CC, Pan IC, King B (2002) Pipsqueak encodes a factor essential for sequence-specific targeting of a Polycomb group protein complex. Mol Cell Biol 22: 6261–6271.

    Article  PubMed  CAS  Google Scholar 

  • Hur MW, Laney JD, Jeon SH, Ali J, Biggin MD (2002) Zeste maintains repression of Ubx transgenes: support for a new model of Polycomb repression. Development 129: 1339–1343.

    PubMed  CAS  Google Scholar 

  • Ingham PW (1983) Differential expression of bithorax complex genes in absence of the extra sex combs and trithorax genes. Nature 306: 591–593.

    Article  Google Scholar 

  • Ingham PW (1985) A clonal analysis of the requirement for the trithorax gene in the diversification of segments in Drosophila. J Embryol Exp Morphol 89: 349–365.

    PubMed  CAS  Google Scholar 

  • Ingham PW (1998) trithorax and the regulation of homeotic gene expression in Drosophila: a historical perspective. Int J Dev Biol 42: 423–429.

    PubMed  CAS  Google Scholar 

  • Janody F, Martirosyan Z, Benlali A, Treisman JE (2003) Two subunits of the Drosophila mediator complex act together to control cell affinity. Development 130: 3691–3701.

    Article  PubMed  CAS  Google Scholar 

  • Jones RS, Gelbart WM (1990) Genetic analysis of the enhancer of zeste locus and its role in gene regulation in Drosophila melanogaster. Genetics 126: 185–199.

    PubMed  CAS  Google Scholar 

  • Jones CA, Ng J, Peterson AJ, Morgan K, Simon J, Jones RS (1998) The Drosophila esc and E(z) proteins are direct partners in polycomb group-mediated repression. Mol Cell Biol 18: 2825–2834.

    PubMed  CAS  Google Scholar 

  • Jürgens G (1985) A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature 316: 153–155.

    Article  Google Scholar 

  • Kassis JA (1994) Unusual properties of regulatory DNA from the Drosophila engrailed gene: three ‘pairing-sensitive’ sites within a 1.6–kb region. Genetics 136: 1025–1038.

    PubMed  CAS  Google Scholar 

  • Kassis JA (2002) Pairing-sensitive silencing, polycomb group response elements, and transposon homing in Drosophila. Adv Genet 46: 421–438.

    PubMed  CAS  Google Scholar 

  • Kehle J, Beuchle D, Treuheit S et al. (1998) dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 282: 1897–1900.

    Article  PubMed  CAS  Google Scholar 

  • Kennison JA, Tamkun JW (1988) Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci USA 85: 8136–8140.

    Article  PubMed  CAS  Google Scholar 

  • Ketel CS, Andersen EF, Vargas ML, Suh J, Strome S, Simon JA (2005) Subunit contributions to histone methyltransferase activities of fly and worm polycomb group complexes. Mol Cell Biol 25: 6857–6868.

    Article  PubMed  CAS  Google Scholar 

  • Korf I, Fan Y, Strome S (1998) The Polycomb group in Caenorhabditis elegans and maternal control of germline development. Development 125: 2469–2478.

    PubMed  CAS  Google Scholar 

  • Kusch T, Florens L, MacDonald WH et al. (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306: 2084–2087.

    Article  PubMed  CAS  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16: 2893–2905.

    Article  PubMed  CAS  Google Scholar 

  • LaJeunesse D, Shearn A (1995) Trans-regulation of thoracic homeotic selector genes of the Antennapedia and bithorax complexes by the trithorax group genes: absent, small, and homeotic discs 1 and 2. Mech Dev 53: 123–139.

    Article  PubMed  CAS  Google Scholar 

  • LaJeunesse D, Shearn A (1996) E(z): a Polycomb group gene or a trithorax group gene? Development 122: 2189–2197.

    PubMed  CAS  Google Scholar 

  • Lewis EB (1951) Pseudoallelism and gene evolution. Cold Spring Harbor Symp Quant Biol 16: 159–174.

    PubMed  CAS  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudi T, Zuijderduijn LM, Mohd-Sarip A, Verrijzer CP (2003) GAGA facilitates binding of Pleiohomeotic to a chromatinized Polycomb response element. Nucleic Acids Res 31: 4147–4156.

    Article  PubMed  CAS  Google Scholar 

  • Maurange C, Paro R (2002) A cellular memory module conveys epigenetic inheritance of hedgehog expression during Drosophila wing imaginal disc development. Genes Dev 16: 2672–2683.

    Article  PubMed  CAS  Google Scholar 

  • Mishra K, Chopra VS, Srinivasan A, Mishra RK (2003) Trl-GAGA directly interacts with lola like and both are part of the repressive complex of Polycomb group of genes. Mech Dev 120: 681–689.

    Article  PubMed  CAS  Google Scholar 

  • Mohd-Sarip A, Venturini F, Chalkley GE, Verrijzer CP (2002) Pleiohomeotic can link polycomb to DNA and mediate transcriptional repression. Mol Cell Biol 22: 7473–7483.

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Hart CM, Francis NJ et al. (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197–208.

    Article  PubMed  CAS  Google Scholar 

  • Nègre N, Hennetin J, Sun LV et al. (2006) Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biology 4: e170.

    Article  PubMed  CAS  Google Scholar 

  • Ng J, Hart CM, Morgan K, Simon JA (2000) A Drosophila ESC-E(Z) protein complex is distinct from other polycomb group complexes and contains covalently modified ESC. Mol Cell Biol 20: 3069–3078.

    Article  PubMed  CAS  Google Scholar 

  • Orlando V, Jane EP, Chinwalla V, Harte PJ, Paro R (1998) Binding of trithorax and Polycomb proteins to the bithorax complex: dynamic changes during early Drosophila embryogenesis. EMBO J 17: 5141–5150.

    Article  PubMed  CAS  Google Scholar 

  • Papoulas O, Beek SJ, Moseley SL et al. (1998) The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development 125: 3955–3966.

    PubMed  CAS  Google Scholar 

  • Petruk S, Sedkov Y, Smith S et al. (2001) Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 294: 1331–1334.

    Article  PubMed  CAS  Google Scholar 

  • Pirrotta V (1991) The genetics and molecular biology of zeste in Drosophila melanogaster. Adv Genet 29: 301–348.

    Article  PubMed  CAS  Google Scholar 

  • Pirrotta V (1999) Transvection and chromosomal trans-interaction effects. Biochim Biophys Acta 1424: M1–M8.

    PubMed  CAS  Google Scholar 

  • Rappailles A, Decoville M, Locker D (2004) DSP1, a Drosophila HMG protein, is involved in spatio-temporal expression of the homeotic gene Sex combs reduced. Biol Cell.

  • Rastelli L, Chan CS, Pirrotta V (1993) Related chromosome binding sites for zeste, suppressors of zeste and Polycomb group proteins in Drosophila and their dependence on Enhancer of zeste function. EMBO J 12: 1513–1522.

    PubMed  CAS  Google Scholar 

  • Ringrose L, Rehmsmeier M, Dura JM, Paro R (2003) Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev Cell 5: 759–771.

    Article  PubMed  CAS  Google Scholar 

  • Rozenblatt-Rosen O, Rozovskaia T, Burakov D et al. (1998) The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc Natl Acad Sci USA 95: 4152–4157.

    Article  PubMed  CAS  Google Scholar 

  • Salvaing J, Lopez A, Boivin A, Deutsch JS, Peronnet F (2003) The Drosophila Corto protein interacts with Polycomb-group proteins and the GAGA factor. Nucleic Acids Res 31: 2873–2882.

    Article  PubMed  CAS  Google Scholar 

  • Satijn DP, Gunster MJ, Van der Vlag J et al. (1997) RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor. Mol Cell Biol 17: 4105–4113.

    PubMed  CAS  Google Scholar 

  • Sato T, Denell RE (1985) Homoeosis in Drosophila: anterior and posterior transformations of Polycomb lethal embryos. Dev Biol 110: 53–64.

    Article  PubMed  CAS  Google Scholar 

  • Saurin AJ, Shao Z, Erdjument-Bromage H, Tempst P, Kingston RE (2001) A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 412: 655–660.

    Article  PubMed  CAS  Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R et al. (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98: 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Shearn A (1989) The ash-1, ash-2 and trithorax genes of Drosophila melanogaster are functionally related. Genetics 121: 517–525.

    PubMed  CAS  Google Scholar 

  • Simon J (1995) Locking in stable states of gene expression: transcriptional control during Drosophila development. Curr Opin Cell Biol 7: 376–385.

    Article  PubMed  CAS  Google Scholar 

  • Simon J, Chiang A, Bender W (1992) Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products. Development 114: 493–505.

    PubMed  CAS  Google Scholar 

  • Sinclair DA, Clegg NJ, Antonchuk J et al. (1998) Enhancer of Polycomb is a suppressor of position-effect variegation in Drosophila melanogaster. Genetics 148: 211–220.

    PubMed  CAS  Google Scholar 

  • Smith ST, Petruk S, Sedkov Y et al. (2004) Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nat Cell Biol.

  • Spillane C, MacDougall C, Stock C et al. (2000) Interaction of the Arabidopsis Polycomb group proteins FIE and MEA mediates their common phenotypes. Curr Biol 10: 1535–1538.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan S, Armstrong JA, Deuring R, Dahlsveen IK, McNeill H, Tamkun JW (2005) The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development 132: 1623–1635.

    Article  PubMed  CAS  Google Scholar 

  • Stankunas K, Berger J, Ruse C, Sinclair DA, Randazzo F, Brock HW (1998) The enhancer of polycomb gene of Drosophila encodes a chromatin protein conserved in yeast and mammals. Development 125: 4055–4066.

    PubMed  CAS  Google Scholar 

  • Struhl G, Akam M (1985) Altered distributions of Ultrabithorax transcripts in extra sex combs mutant embryos of Drosophila. EMBO J 4: 3259–3264.

    PubMed  CAS  Google Scholar 

  • Struhl G, White RA (1985) Regulation of the Ultrabithorax gene of Drosophila by other bithorax complex genes. Cell 43: 507–519.

    Article  PubMed  CAS  Google Scholar 

  • Tie F, Furuyama T, Harte PJ (1998) The Drosophila Polycomb Group proteins ESC and E(Z) bind directly to each other and co-localize at multiple chromosomal sites. Development 125: 3483–3496.

    PubMed  CAS  Google Scholar 

  • Tie F, Furuyama T, Prasad-Sinha J, Jane E, Harte PJ (2001) The Drosophila Polycomb Group proteins ESC and E(Z) are present in a complex containing the histone-binding protein p55 and the histone deacetylase RPD3. Development 128: 275–286.

    PubMed  CAS  Google Scholar 

  • Tillib S, Petruk S, Sedkov Y et al. (1999) Trithorax- and Polycomb-group response elements within an Ultrabithorax transcription maintenance unit consist of closely situated but separable sequences. Mol Cell Biol 19: 5189–5202.

    PubMed  CAS  Google Scholar 

  • Tripoulas N, Lajeunesse D, Gildea J, Shearn A (1996) The Drosophila ash1 gene product, which is localized at specific sites on polytene chromosomes, contains a SET domain and a PHD finger. Genetics 143: 913–928.

    PubMed  CAS  Google Scholar 

  • Van der Vlag J, Otte AP (1999) Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet 23: 474–478.

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang L, Erdjument-Bromage H et al. (2004a) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431: 873–878.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS (2004b) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14: 637–646.

    Article  PubMed  CAS  Google Scholar 

  • Wu CT, Jones RS, Lasko PF, Gelbart WM (1989) Homeosis and the interaction of zeste and white in Drosophila. Mol Gen Genet 218: 559–564.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Cavalli.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10577-006-1903-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimaud, C., Nègre, N. & Cavalli, G. From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 14, 363–375 (2006). https://doi.org/10.1007/s10577-006-1069-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1069-y

Key words

Navigation