Skip to main content

Polycomb Complexes: Chromatin Regulators Required for Cell Diversity and Tissue Homeostasis

  • Chapter
  • First Online:
Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

The Polycomb group (PcG) products are a set of evolutionary conserved proteins that form chromatin regulator complexes that control expression of developmentally relevant genes. PcG activity is essential not only to maintain the developmental potential of pluripotent cells from which specialized cell types arise, but also to ensure the directionality of the differentiation process. In the adult, these PcG functions are essential for normal cell homeostasis and their deregulation is often associated with cell transformation events. PcG-dependent transcriptional control involves posttranslational modifications of histones, decreased DNA accessibility, and other mechanisms. While the stability of Polycomb-determined chromatin landscapes is rather stable in differentiated cells, in pluripotent cells it is characteristically dynamic in order to accommodate the execution of developmental genetic programs. Best known as repressors of gene expression, recent evidence points at roles during gene activation. Besides gene expression control, PcG products also participate in other essential functions such as DNA damage response, indicating that these proteins are involved in a wide spectrum of cellular and organismal functions in need of detailed characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab O, Adli M, LaFave LM et al (2012) ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22:180–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Agger K, Cloos PA, Christensen J et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734

    CAS  PubMed  Google Scholar 

  • Akasaka T, Kanno M, Balling R et al (1996) A role for mel-18, a Polycomb group-related vertebrate gene, during the anteroposterior specification of the axial skeleton. Development 122:1513–1522

    CAS  PubMed  Google Scholar 

  • An JY, Kim E-A, Jiang Y et al (2010) UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc Natl Acad Sci USA 107:1912–1917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aravind L, Iyer LM (2012) The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle 11:119–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnold P, Scholer A, Pachkov M et al (2013) Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Res 23:60–73

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azuara V, Perry P, Sauer S et al (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538

    CAS  PubMed  Google Scholar 

  • Ballaré C, Lange M, Lapinaite A et al (2012) Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat Struct Mol Biol 19:1257–1265

    PubMed Central  PubMed  Google Scholar 

  • Bantignies F, Grimaud C, Lavrov S et al (2003) Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev 17:2406–2420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bantignies F, Roure V, Comet I et al (2011) Polycomb-dependent regulatory contacts between distant Hox Loci in Drosophila. Cell 144:214–226

    CAS  PubMed  Google Scholar 

  • Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307

    CAS  PubMed  Google Scholar 

  • Baù D, Sanyal A, Lajoie BR et al (2010) The three-dimensional folding of the ∝-globin gene domain reveals formation of chromatin globules. Nat Struct Mol Biol 18:107–114

    PubMed Central  PubMed  Google Scholar 

  • Beh LY, Colwell LJ, Francis NJ (2012) A core subunit of Polycomb repressive complex 1 is broadly conserved in function but not primary sequence. Proc Natl Acad Sci USA 109:E1063–E1071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bentley ML, Corn JE, Dong KC et al (2011) Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex. EMBO J 30:3285–3297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bergink S, Salomons FA, Hoogstraten D et al (2006) DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes Dev 20:1343–1352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X et al (2006a) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    CAS  PubMed  Google Scholar 

  • Bernstein E, Duncan EM, Masui O et al (2006b) Mouse Polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 26:2560–2569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blackledge NP, Klose R (2011) CpG island chromatin: a platform for gene regulation. Epigenetics 6:147–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonasio R, Lecona E, Reinberg D (2010) MBT domain proteins in development and disease. Semin Cell Dev Biol 21:221–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyer LA, Plath K, Zeitlinger J et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    CAS  PubMed  Google Scholar 

  • Bracken AP, Helin K (2009) Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 9:773–784

    CAS  PubMed  Google Scholar 

  • Bracken AP, Dietrich N, Pasini D et al (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20:1123–1136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brien GL, Gambero G, O’Connell DJ et al (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19:1273–1281

    CAS  PubMed  Google Scholar 

  • Brookes E, de Santiago I, Hebenstreit D et al (2012) Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell 10:157–170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown JL, Mucci D, Whiteley M et al (1998) The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1:1057–1064

    CAS  PubMed  Google Scholar 

  • Brown JL, Fritsch C, Mueller J, Kassis JA (2003) The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 130:285–294

    CAS  PubMed  Google Scholar 

  • Buchwald G, der Stoop van P, Weichenrieder O et al (2006) Structure and E3-ligase activity of the Ring–Ring complex of Polycomb proteins Bmi1 and Ring1b. EMBO J 25:2465–2474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cai L, Rothbart SB, Lu R et al (2013) An H3K36 methylation-engaging Tudor motif of Polycomb-like proteins mediates PRC2 complex targeting. Mol Cell 49:571–582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calés C, Román-Trufero M, Pavón L et al (2008) Inactivation of the Polycomb group protein Ring1B unveils an antiproliferative role in hematopoietic cell expansion and cooperation with tumorigenesis associated to Ink4a deletion. Mol Cell Biol 28:1018–1028

    PubMed Central  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043

    CAS  PubMed  Google Scholar 

  • Cao R, Tsukada Y-I, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20:845–854

    CAS  PubMed  Google Scholar 

  • Chagraoui J, Hebert J, Girard S, Sauvageau G (2011) An anticlastogenic function for the Polycomb group gene Bmi1. Proc Natl Acad Sci USA 108:5284–5289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakalova L, Debrand E, Mitchell JA et al (2005) Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 6:669–677

    CAS  PubMed  Google Scholar 

  • Chen S, Ma J, Wu F et al (2012) The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation. Genes Dev 26:1364–1375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheutin T, Cavalli G (2012) Progressive Polycomb assembly on H3K27me3 compartments generates Polycomb bodies with developmentally regulated motion. PLoS Genet 8:e1002465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chopra VS, Hendrix DA, Core LJ et al (2011) The Polycomb group mutant esc leads to augmented levels of paused Pol II in the Drosophila embryo. Mol Cell 42:837–844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chou DM, Adamson B, Dephoure NE et al (2010) A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive Polycomb and NuRD complexes to sites of DNA damage. Proc Natl Acad Sci USA 107:18475–18480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciferri C, Lander GC, Maiolica A et al (2012) Molecular architecture of human Polycomb repressive complex 2. Elife 1:e00005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cmarko D, Verschure PJ, Otte AP et al (2002) Polycomb group gene silencing proteins are concentrated in the perichromatin compartment of the mammalian nucleus. J Cell Sci 116:335–343

    Google Scholar 

  • Cook PR (2010) A model for all genomes: the role of transcription factories. J Mol Biol 395:1–10

    CAS  PubMed  Google Scholar 

  • Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Core LJ, Waterfall JJ, Gilchrist DA et al (2012) Defining the status of RNA polymerase at promoters. Cell Rep 2:1025–1035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11:1037–1043

    CAS  PubMed  Google Scholar 

  • Creyghton MP, Markoulaki S, Levine SS et al (2008) H2AZ is enriched at Polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 135:649–661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Creyghton MP, Cheng AW, Welstead GG et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107:21931–21936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cui K, Zang C, Roh T-Y et al (2009) Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4:80–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Czermin B, Melfi R, McCabe D et al (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111:185–196

    CAS  PubMed  Google Scholar 

  • Dahle Ø, Kumar A, Kuehn MR (2010) Nodal signaling recruits the histone demethylase Jmjd3 to counteract Polycomb-mediated repression at target genes. Sci Signal 3:ra48

    PubMed  Google Scholar 

  • de Napoles M, Mermoud JE, Wakao R et al (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7:663–676

    PubMed  Google Scholar 

  • De Santa F, Narang V, Yap ZH et al (2009) Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 28:3341–3352

    PubMed Central  PubMed  Google Scholar 

  • de Wit E, de Laat W (2012) A decade of 3C technologies: insights into nuclear organization. Genes Dev 26:11–24

    PubMed Central  PubMed  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403

    CAS  PubMed  Google Scholar 

  • del Mar LM, Marcos-Gutiérrez C, Pérez C et al (2000) Loss- and gain-of-function mutations show a Polycomb group function for Ring1A in mice. Development 127:5093–5100

    Google Scholar 

  • Delest A, Sexton T, Cavalli G (2012) Polycomb: a paradigm for genome organization from one to three dimensions. Curr Opin Cell Biol 24:405–414

    CAS  PubMed  Google Scholar 

  • Dellino GI, Schwartz YB, Farkas G et al (2004) Polycomb silencing blocks transcription initiation. Mol Cell 13:887–893

    CAS  PubMed  Google Scholar 

  • der Lugt van NM, Domen J, Linders K et al (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 8:757–769

    Google Scholar 

  • Dey A, Seshasayee D, Noubade R et al (2012) Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337:1541–1546

    CAS  PubMed  Google Scholar 

  • Dietrich N, Lerdrup M, Landt E et al (2012) REST–mediated recruitment of Polycomb repressor complexes in mammalian cells. PLoS Genet 8:e1002494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Draker R, Sarcinella E, Cheung P (2011) USP10 deubiquitylates the histone variant H2A.Z and both are required for androgen receptor-mediated gene activation. Nucleic Acids Res 39:3529–3542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Enderle D, Beisel C, Stadler MB et al (2011) Polycomb preferentially targets stalled promoters of coding and noncoding transcripts. Genome Res 21:216–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Endoh M, Endo TA, Endoh T et al (2012) Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet 8:e1002774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ernst J, Kheradpour P, Mikkelsen TS et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eskeland R, Leeb M, Grimes GR et al (2010) Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 38:452–464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eustermann S, Yang J-C, Law MJ et al (2011) Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat Struct Mol Biol 18:777–782

    CAS  PubMed  Google Scholar 

  • Farcas AM, Blackledge NP, Sudbery I et al (2012) KDM2B links the Polycomb repressive complex 1 (PRC1) to recognition of CpG islands. Elife 1:e00205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fenouil R, Cauchy P, Koch F et al (2012) CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res 22:2399–2408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Filion GJ, van Bemmel JG, Braunschweig U et al (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143:212–224. doi:10.1016/j.cell.2010.09.009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischle W, Wang Y, Jacobs SA et al (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17:1870–1881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Follmer NE, Wani AH, Francis NJ (2012) A Polycomb group protein is retained at specific sites on chromatin in mitosis. PLoS Genet 8:e1003135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fonseca JP, Steffen PA, Muller S et al (2012) In vivo Polycomb kinetics and mitotic chromatin binding distinguish stem cells from differentiated cells. Genes Dev 26:857–871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL (2004) Chromatin compaction by a Polycomb group protein complex. Science 306:1574–1577

    CAS  PubMed  Google Scholar 

  • Francis NJ, Follmer NE, Simon MD et al (2009) Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. Cell 137:110–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frescas D, Guardavaccaro D, Bassermann F et al (2007) JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450:309–313

    CAS  PubMed  Google Scholar 

  • Gaertner B, Johnston J, Chen K et al (2012) Poised RNA polymerase II changes over developmental time and prepares genes for future expression. Cell Rep 2:1670–1683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gambetta MC, Oktaba K, Müller J (2009) Essential role of the glycosyltransferase sxc/Ogt in Polycomb repression. Science 325:93–96. doi:10.1126/science.1169727

    CAS  PubMed  Google Scholar 

  • Gao Z, Zhang J, Bonasio R et al (2012) PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 45:344–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • García E, Marcos-Gutiérrez C, del Mar LM et al (1999) RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. EMBO J 18:3404–3418

    PubMed Central  PubMed  Google Scholar 

  • Gearhart MD, Corcoran CM, Wamstad JA, Bardwell VJ (2006) Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol 26:6880–6889

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gehani SS, Agrawal-Singh S, Dietrich N et al (2010) Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell 39:886–900

    CAS  PubMed  Google Scholar 

  • Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956

    CAS  PubMed  Google Scholar 

  • Ghamari A, van de Corput MPC, Thongjuea S et al (2013) In vivo live imaging of RNA polymerase II transcription factories in primary cells. Genes Dev 27:767–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibcus JH, Dekker J (2012) The context of gene expression regulation. F1000 Biol Rep 4:8

    PubMed Central  PubMed  Google Scholar 

  • Gieni RS, Ismail IH, Campbell S, Hendzel MJ (2011) Polycomb group proteins in the DNA damage response: a link between radiation resistance and “stemness”. Cell Cycle 10:883–894

    CAS  PubMed  Google Scholar 

  • Ginjala V, Nacerddine K, Kulkarni A et al (2011) BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol 31:1972–1982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldknopf IL, Taylor CW, Baum RM et al (1975) Isolation and characterization of protein A24, a “histone-like” non-histone chromosomal protein. J Biol Chem 250:7182–7187

    CAS  PubMed  Google Scholar 

  • Grau DJ, Chapman BA, Garlick JD et al (2011) Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge. Genes Dev 25:2210–2221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grimaud C, Bantignies F, Pal-Bhadra M et al (2006) RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124:957–971

    CAS  PubMed  Google Scholar 

  • Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gutierrez L, Oktaba K, Scheuermann JC et al (2011) The role of the histone H2A ubiquitinase Sce in Polycomb repression. Development 139:117–127

    PubMed  Google Scholar 

  • Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346

    CAS  PubMed  Google Scholar 

  • Guttman M, Donaghey J, Carey BW et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanover JA, Krause MW, Love DC (2012) Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 13:312–321

    CAS  PubMed  Google Scholar 

  • Hansen K, Bracken A, Pasini D et al (2008) A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10:1291–1300

    CAS  PubMed  Google Scholar 

  • Hathaway NA, Bell O, Hodges C et al (2012) Dynamics and memory of heterochromatin in living cells. Cell 149:1447–1460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkins RD, Hon GC, Lee LK et al (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • He J, Kallin EM, Tsukada Y-I, Zhang Y (2008) The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15Ink4b. Nat Struct Mol Biol 15:1169–1175

    CAS  PubMed Central  PubMed  Google Scholar 

  • He A, Shen X, Ma Q et al (2012) PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev 26:37–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • He J, Shen L, Wan M et al (2013) Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol 15:373–384

    CAS  PubMed  Google Scholar 

  • Hekimoglu-Balkan B, Aszodi A, Heinen R et al (2012) Intergenic Polycomb target sites are dynamically marked by non-coding transcription during lineage commitment. RNA Biol 9:314–325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henikoff S (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9:15–26

    CAS  PubMed  Google Scholar 

  • Henikoff S, Shilatifard A (2011) Histone modification: cause or cog? Trends Genet 27:389–396

    CAS  PubMed  Google Scholar 

  • Herz H-M, Shilatifard A (2010) The JARID2-PRC2 duality. Genes Dev 24:857–861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hisada K, Sanchez C, Endo TA et al (2012) RYBP represses endogenous retroviruses and preimplantation- and germ line-specific genes in mouse embryonic stem cells. Mol Cell Biol 32:1139–1149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong Z, Jiang J, Lan L et al (2008) A Polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell. Nucleic Acids Res 36:2939–2947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hou C, Li L, Qin ZS, Corces VG (2012) Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol Cell 48:471–484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu H, Yang Y, Ji Q et al (2012) CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis. Cancer Cell 22:781–795

    CAS  PubMed  Google Scholar 

  • Huang C, Xu M, Zhu B (2012) Epigenetic inheritance mediated by histone lysine methylation: maintaining transcriptional states without the precise restoration of marks? Philos Trans R Soc Lond B Biol Sci 368:1471–1475

    Google Scholar 

  • Illingworth RS, Bird AP (2009) CpG islands–“a rough guide”. FEBS Lett 583:1713–1720

    CAS  PubMed  Google Scholar 

  • Illingworth RS, Gruenewald-Schneider U, Webb S et al (2010) Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet 6:e1001134

    PubMed Central  PubMed  Google Scholar 

  • Ismail IH, Andrin C, McDonald D, Hendzel MJ (2010) BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J Cell Biol 191:45–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Isono K, Endo TA, Ku M et al (2013) SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev Cell 26:565–577

    CAS  PubMed  Google Scholar 

  • Iyer BV, Kenward M, Arya G (2011) Hierarchies in eukaryotic genome organization: insights from polymer theory and simulations. BMC Biophys 4:8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson S, Xiong Y (2009) CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 34:562–570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jhunjhunwala S, van Zelm MC, Peak MM et al (2008) The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 133:265–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang H, Shukla A, Wang X et al (2011a) Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144:513–525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang X-X, Nguyen Q, Chou Y et al (2011b) Control of B cell development by the histone H2A deubiquitinase MYSM1. Immunity 35:883–896

    CAS  PubMed  Google Scholar 

  • Joo H-Y, Zhai L, Yang C et al (2007) Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449:1068–1072

    CAS  PubMed  Google Scholar 

  • Joo H-Y, Jones A, Yang C et al (2011) Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46. J Biol Chem 286:7190–7201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kagey MH, Melhuish TA, Wotton D (2003) The Polycomb protein Pc2 is a SUMO E3. Cell 113:127–137

    CAS  PubMed  Google Scholar 

  • Kalenik JL, Chen D, Bradley ME et al (1997) Yeast two-hybrid cloning of a novel zinc finger protein that interacts with the multifunctional transcription factor YY1. Nucleic Acids Res 25:843–849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneko S, Li G, Son J et al (2010) Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev 24:2615–2620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang X, Qi Y, Zuo Y et al (2010) SUMO-specific protease 2 is essential for suppression of Polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 38:191–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanhere A, Viiri K, Araújo CC et al (2010) Short RNAs are transcribed from repressed Polycomb target genes and interact with Polycomb repressive complex-2. Mol Cell 38:675–688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kellner WA, Ramos E, Van Bortle K et al (2012) Genome-wide phosphoacetylation of histone H3 at Drosophila enhancers and promoters. Genome Res 22:1081–1088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khalil AM, Guttman M, Huarte M et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106:11667–11672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kharchenko PV, Alekseyenko AA, Schwartz YB et al (2010) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471:480–485

    PubMed Central  PubMed  Google Scholar 

  • Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP (2008) SWI/SNF mediates Polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol 28:3457–3464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim H, Kang K, Kim J (2009) AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. Nucleic Acids Res 37:2940–2950

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klauke K, Radulović V, Broekhuis M et al (2013) Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol 15:353–362

    CAS  PubMed  Google Scholar 

  • Klose RJ, Cooper S, Farcas AM et al (2013) Chromatin sampling—an emerging perspective on targeting Polycomb repressor proteins. PLoS Genet 9:e1003717–e1003718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klymenko T, Papp B, Fischle W et al (2006) A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev 20:1110–1122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kohwi M, Lupton JR, Lai S-L et al (2013) Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell 152:97–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    CAS  PubMed  Google Scholar 

  • Kooistra SM, Helin K (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 13:297–311

    CAS  PubMed  Google Scholar 

  • Ku M, Koche RP, Rheinbay E et al (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4:e1000242

    PubMed Central  PubMed  Google Scholar 

  • Ku M, Jaffe JD, Koche RP et al (2012) H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions. Genome Biol 13:R85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H et al (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16:2893–2905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzmichev A, Jenuwein T, Tempst P, Reinberg D (2004) Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 14:183–193

    CAS  PubMed  Google Scholar 

  • Kuzmichev A, Margueron R, Vaquero A et al (2005) Composition and histone substrates of Polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci USA 102:1859–1864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lan F, Bayliss P, Rinn JL et al (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449:689–694

    CAS  PubMed  Google Scholar 

  • Landeira D, Sauer S, Poot R et al (2010) Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat Cell Biol 12:618–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lanzuolo C, Orlando V (2012) Memories from the Polycomb group proteins. Annu Rev Genet 46:561–589

    CAS  PubMed  Google Scholar 

  • Lau PNI, Cheung P (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes Polycomb silencing. Proc Natl Acad Sci USA 108:2801–2806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA et al (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MG, Villa R, Trojer P et al (2007) Demethylation of H3K27 regulates Polycomb recruitment and H2A ubiquitination. Science 318:447–450

    CAS  PubMed  Google Scholar 

  • Leeb M, Pasini D, Novatchkova M et al (2010) Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev 24:265–276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260

    CAS  PubMed  Google Scholar 

  • Levine M (2011) Paused RNA polymerase II as a developmental checkpoint. Cell 145:502–511

    CAS  PubMed  Google Scholar 

  • Levine SS, Weiss A, Erdjument-Bromage H et al (2002) The core of the Polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol 22:6070–6078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    CAS  PubMed  Google Scholar 

  • Li Z, Cao R, Wang M et al (2006) Structure of a Bmi-1-Ring1B Polycomb group ubiquitin ligase complex. J Biol Chem 281:20643–20649

    CAS  PubMed  Google Scholar 

  • Li B, Zhou J, Liu P et al (2007) Polycomb protein Cbx4 promotes SUMO modification of de novo DNA methyltransferase Dnmt3a. Biochem J 405:369–378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Margueron R, Ku M et al (2010) Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 24:368–380

    PubMed Central  PubMed  Google Scholar 

  • Li HB, Müller M, Bahechar IA et al (2011) Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster. Mol Cell Biol 31:616–625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Ruan X, Auerbach RK et al (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148:84–98

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H-B, Ohno K, Gui H, Pirrotta V (2013) Insulators target active genes to transcription factories and Polycomb-repressed genes to Polycomb bodies. PLoS Genet 9:e1003436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YC, Jhunjhunwala S, Benner C et al (2010) A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol 11:635–643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YC, Benner C, Månsson R et al (2012) Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol 13:1196–1204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Long HK, Blackledge NP, Klose RJ (2013a) ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem Soc Trans 41:727–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Long HK, Sims D, Heger A et al (2013b) Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. Elife 2:e00348

    PubMed Central  PubMed  Google Scholar 

  • Loyola A, Tagami H, Bonaldi T et al (2009) The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 10:769–775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luis NM, Morey L, Mejetta S et al (2011) Regulation of human epidermal stem cell proliferation and senescence requires Polycomb-dependent and -independent functions of Cbx4. Cell Stem Cell 9:233–246

    CAS  PubMed  Google Scholar 

  • Lynch MD, Smith AJH, De Gobbi M et al (2011) An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO J 31:317–329

    PubMed Central  PubMed  Google Scholar 

  • MacPherson MJ, Beatty LG, Zhou W et al (2009) The CTCF insulator protein is posttranslationally modified by SUMO. Mol Cell Biol 29:714–725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27:295–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Margueron R, Li G, Sarma K et al (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32:503–518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Margueron R, Justin N, Ohno K et al (2009) Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–767

    CAS  PubMed Central  PubMed  Google Scholar 

  • McBryant SJ, Adams VH, Hansen JC (2006) Chromatin architectural proteins. Chromosome Res 14:39–51

    CAS  PubMed  Google Scholar 

  • McCabe MT, Graves AP, Ganji G et al (2012a) Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci USA 109:2989–2994

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCabe MT, Ott HM, Ganji G et al (2012b) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112

    CAS  PubMed  Google Scholar 

  • Mendenhall EM, Koche RP, Truong T et al (2010) GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet 6:e1001244

    PubMed Central  PubMed  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    CAS  PubMed  Google Scholar 

  • Meshorer E, Yellajoshula D, George E et al (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10:105–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mills AA (2010) Throwing the cancer switch: reciprocal roles of Polycomb and trithorax proteins. Nat Rev Cancer 10:669–682

    CAS  PubMed  Google Scholar 

  • Min IM, Waterfall JJ, Core LJ et al (2011) Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev 25:742–754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mito Y, Henikoff JG, Henikoff S (2007) Histone replacement marks the boundaries of cis-regulatory domains. Science 315:1408–1411

    CAS  PubMed  Google Scholar 

  • Mohd-Sarip A, Lagarou A, Doyen CM et al (2012) Transcription-independent function of Polycomb group protein PSC in cell cycle control. Science 336:744–747

    CAS  PubMed  Google Scholar 

  • Mohn F, Weber M, Rebhan M et al (2008) Lineage-specific Polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30:755–766

    CAS  PubMed  Google Scholar 

  • Montgomery ND, Yee D, Chen A et al (2005) The murine Polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol 15:942–947

    CAS  PubMed  Google Scholar 

  • Morey L, Aloia L, Cozzuto L et al (2013) RYBP and Cbx7 define specific biological functions of Polycomb complexes in mouse embryonic stem cells. Cell Rep 3:60–69

    CAS  PubMed  Google Scholar 

  • Mousavi K, Zare H, Wang AH, Sartorelli V (2012) Polycomb protein Ezh1 promotes RNA polymerase II elongation. Mol Cell 45:255–262

    CAS  PubMed  Google Scholar 

  • Müller J, Kassis JA (2006) Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr Opin Genet Dev 16:476–484

    PubMed  Google Scholar 

  • Müller J, Hart CM, Francis NJ et al (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111:197–208

    PubMed  Google Scholar 

  • Muse GW, Gilchrist DA, Nechaev S et al (2007) RNA polymerase is poised for activation across the genome. Nat Genet 39:1507–1511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Musselman CA, Lalonde M-E, Côté J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19:1218–1227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa T, Kajitani T, Togo S et al (2008) Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation. Genes Dev 22:37–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nechaev S, Fargo DC, dos Santos G et al (2010) Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327:335–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neira J, Román-Trufero M, Contreras L et al (2009) The transcriptional repressor RYBP is a natively unfolded protein which folds upon binding to DNA. Biochemistry 48:1348–1360

    CAS  PubMed  Google Scholar 

  • Noordermeer D, Leleu M, Splinter E et al (2011) The dynamic architecture of Hox gene clusters. Science 334:222–225

    CAS  PubMed  Google Scholar 

  • Nora EP, Lajoie BR, Schulz EG et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Meara MM, Simon JA (2012) Inner workings and regulatory inputs that control Polycomb repressive complex 2. Chromosoma 121:221–234

    PubMed Central  PubMed  Google Scholar 

  • Ogawa H, Ishiguro K-I, Gaubatz S et al (2002) A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296:1132–1136

    CAS  PubMed  Google Scholar 

  • Ohtsubo M, Yasunaga S, Ohno Y et al (2008) Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc Natl Acad Sci USA 105:10396–10401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Onder TT, Kara N, Cherry A et al (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature 483:598–602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan M-R, Peng G, Hung W-C, Lin S-Y (2011) Monoubiquitination of H2AX protein regulates DNA damage response signaling. J Biol Chem 286:28599–28607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey RR, Mondal T, Mohammad F et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246

    CAS  PubMed  Google Scholar 

  • Papamichos-Chronakis M, Peterson CL (2012) Chromatin and the genome integrity network. Nat Rev Genet 14:62–75

    Google Scholar 

  • Pasini D, Bracken AP, Jensen MR et al (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23:4061–4071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasini D, Bracken AP, Hansen JB et al (2007) The Polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27:3769–3779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasini D, Cloos PAC, Walfridsson J et al (2010a) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464:306–310

    CAS  PubMed  Google Scholar 

  • Pasini D, Malatesta M, Jung HR et al (2010b) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38:4958–4969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng JC, Valouev A, Swigut T et al (2009) Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139:1290–1302

    PubMed Central  PubMed  Google Scholar 

  • Pengelly AR, Copur Ö, Jäckle H et al (2013) A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339:698–699

    CAS  PubMed  Google Scholar 

  • Pereira CF, Piccolo FM, Tsubouchi T et al (2010) ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 6:547–556

    CAS  PubMed  Google Scholar 

  • Peric-Hupkes D, Meuleman W, Pagie L et al (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38:603–613

    CAS  PubMed  Google Scholar 

  • Petruk S, Sedkov Y, Johnston DM et al (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922–933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Philips-Cremins JE, Sauria MEG, Sanyal A et al (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153:1281–1295

    Google Scholar 

  • Qiao F, Bowie JU (2005) The many faces of SAM. Sci STKE 2005:re7

    PubMed  Google Scholar 

  • Rahl PB, Lin CY, Seila AC et al (2010) c-Myc regulates transcriptional pause release. Cell 141:432–445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ram O, Goren A, Amit I et al (2011) Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 147:1628–1639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rando OJ (2012) Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 22:148–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddington JP, Perricone SM, Nestor CE et al (2013) Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb-target genes. Genome Biol 14:R25

    PubMed  Google Scholar 

  • Ren X, Kerppola TK (2011) REST interacts with Cbx proteins and regulates Polycomb repressive complex 1 occupancy at RE1 elements. Mol Cell Biol 31:2100–2110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds N, Salmon-Divon M, Dvinge H et al (2012) NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J 31:593–605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds N, O’Shaughnessy A, Hendrich B (2013) Transcriptional repressors: multifaceted regulators of gene expression. Development 140:505–512

    CAS  PubMed  Google Scholar 

  • Riley PD, Carroll SB, Scott MP (1987) The expression and regulation of Sex combs reduced protein in Drosophila embryos. Genes Dev 1:716–730

    CAS  PubMed  Google Scholar 

  • Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134:223–232

    CAS  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roscic A, Möller A, Calzado MA et al (2006) Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol Cell 24:77–89

    CAS  PubMed  Google Scholar 

  • Rowbotham SP, Barki L, Neves-Costa A et al (2011) Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol Cell 42:285–296

    CAS  PubMed  Google Scholar 

  • Sánchez C, Sánchez I, Demmers JAA et al (2007) Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol Cell Proteomics 6:820–834

    PubMed  Google Scholar 

  • Sarcinella E, Zuzarte PC, Lau PNI et al (2007) Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol Cell Biol 27:6457–6468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satijn DP, Gunster MJ, der Vlag van J et al (1997) RING1 is associated with the Polycomb group protein complex and acts as a transcriptional repressor. Mol Cell Biol 17:4105–4113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawarkar R, Paro R (2010) Interpretation of developmental signaling at chromatin: the Polycomb perspective. Dev Cell 19:651–661

    CAS  PubMed  Google Scholar 

  • Schaaf CA, Kwak H, Koenig A et al (2013a) Genome-wide control of RNA polymerase II activity by cohesin. PLoS Genet 9:e1003382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaaf CA, Misulovin Z, Gause M et al (2013b) Cohesin and Polycomb proteins functionally interact to control transcription at silenced and active genes. PLoS Genet 9:e1003560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheuermann JC, De Ayala Alonso AG, Oktaba K et al (2010) Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465:243–249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitges FW, Prusty AB, Faty M et al (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42:330–341

    CAS  PubMed  Google Scholar 

  • Schoeftner S, Sengupta AK, Kubicek S et al (2006) Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 25:3110–3122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schoorlemmer J, Marcos-Gutiérrez C, Were F et al (1997) Ring1A is a transcriptional repressor that interacts with the Polycomb-M33 protein and is expressed at rhombomere boundaries in the mouse hindbrain. EMBO J 16:5930–5942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M et al (2007) Genome regulation by Polycomb and trithorax proteins. Cell 128:735–745

    CAS  PubMed  Google Scholar 

  • Schuettengruber B, Martinez A-M, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12:799–814

    CAS  PubMed  Google Scholar 

  • Schwartz YB, Kahn TG, Stenberg P et al (2010) Alternative epigenetic chromatin states of Polycomb target genes. PLoS Genet 6:e1000805

    PubMed Central  PubMed  Google Scholar 

  • Seila AC, Calabrese JM, Levine SS et al (2008) Divergent transcription from active promoters. Science 322:1849–1851

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sexton T, Yaffe E, Kenigsberg E et al (2012) Three-dimensional folding and functional organization principles of the drosophila genome. Cell 148:458–472

    CAS  PubMed  Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R et al (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98:37–46

    CAS  PubMed  Google Scholar 

  • Shaver S, Casas-Mollano JA, Cerny RL, Cerutti H (2010) Origin of the Polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics 5:301–312

    CAS  PubMed  Google Scholar 

  • Shen X, Liu Y, Hsu Y-J et al (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32:491–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen X, Kim W, Fujiwara Y et al (2009) Jumonji modulates Polycomb activity and self-renewal versus differentiation of stem cells. Cell 139:1303–1314

    PubMed Central  PubMed  Google Scholar 

  • Shen Y, Yue F, McCleary DF et al (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488:116–120

    CAS  PubMed  Google Scholar 

  • Shpargel KB, Sengoku T, Yokoyama S, Magnuson T (2012) UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLoS Genet 8:e1002964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sigova AA, Mullen AC, Molinie B et al (2013) Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc Natl Acad Sci USA 110:2876–2881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon JA, Kingston RE (2013) Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49:808–824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinclair DAR, Syrzycka M, Macauley MS et al (2009) Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc Natl Acad Sci USA 106:13427–13432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sing A, Pannell D, Karaiskakis A et al (2009) A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138:885–897

    CAS  PubMed  Google Scholar 

  • Slifer EH (1942) A mutant stock of Drosophila with extra sex-combs. J Exp Zool 90:31–40

    Google Scholar 

  • Smith M, Mallin DR, Simon JA, Courey AJ (2011) Small ubiquitin-like modifier (SUMO) conjugation impedes transcriptional silencing by the Polycomb group repressor sex comb on midleg. J Biol Chem 286:11391–11400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sneeringer CJ, Scott MP, Kuntz KW et al (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA 107:20980–20985

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soria G, Polo SE, Almouzni G (2012) Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell 46:722–734

    CAS  PubMed  Google Scholar 

  • Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856

    CAS  PubMed  Google Scholar 

  • Stadler MB, Murr R, Burger L et al (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495

    CAS  PubMed  Google Scholar 

  • Steffen PA, Fonseca JP, Ringrose L (2012) Epigenetics meets mathematics: towards a quantitative understanding of chromatin biology. Bioessays 34:901–913

    CAS  PubMed  Google Scholar 

  • Stepanik VA, Harte PJ (2012) A mutation in the E(Z) methyltransferase that increases trimethylation of histone H3 lysine 27 and causes inappropriate silencing of active Polycomb target genes. Dev Biol 364:249–258

    CAS  PubMed  Google Scholar 

  • Stock J, Giadrossi S, Casanova M et al (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9:1428–1435

    CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  • Strübbe G, Popp C, Schmidt A et al (2011) Polycomb purification by in vivo biotinylation tagging reveals cohesin and Trithorax group proteins as interaction partners. Proc Natl Acad Sci USA 108:5572–5577

    PubMed Central  PubMed  Google Scholar 

  • Su W-J, Fang J-S, Cheng F et al (2013) RNF2/Ring1b negatively regulates p53 expression in selective cancer cell types to promote tumor development. Proc Natl Acad Sci USA 110:1720–1725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tan J, Jones M, Koseki H et al (2011) CBX8, a Polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell 20:563–575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tavares L, Dimitrova E, Oxley D et al (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3K27me3. Cell 148:664–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taverna SD, Li H, Ruthenburg AJ et al (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040

    CAS  PubMed  Google Scholar 

  • Tie F, Banerjee R, Stratton CA et al (2009) CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136:3131–3141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trojer P, Cao AR, Gao Z et al (2011) L3MBTL2 protein acts in concert with PcG protein-mediated monoubiquitination of H2A to establish a repressive chromatin structure. Mol Cell 42:438–450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai M-C, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsukada Y-I, Fang J, Erdjument-Bromage H et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    CAS  PubMed  Google Scholar 

  • van Arensbergen J, García-Hurtado J, Maestro MA et al (2013) Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells. Genes Dev 27:52–63

    PubMed Central  PubMed  Google Scholar 

  • Vernimmen D, Lynch MD, De Gobbi M et al (2011) Polycomb eviction as a new distant enhancer function. Genes Dev 25:1583–1588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vissers JHA, van Lohuizen M, Citterio E (2012) The emerging role of Polycomb repressors in the response to DNA damage. J Cell Sci 125:3939–3948

    CAS  PubMed  Google Scholar 

  • Voigt P, Leroy G, Drury WJ III et al (2012) Asymmetrically modified nucleosomes. Cell 151:181–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Wang L, Erdjument-Bromage H et al (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878

    CAS  PubMed  Google Scholar 

  • Wang H, Zhai L, Xu J et al (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22:383–394

    PubMed  Google Scholar 

  • Wang R, Taylor AB, Leal BZ et al (2010) Polycomb group targeting through different binding partners of RING1B C-terminal domain. Structure 18:966–975

    CAS  PubMed  Google Scholar 

  • Whitcomb SJ, Basu A, Allis CD, Bernstein E (2007) Polycomb group proteins: an evolutionary perspective. Trends Genet 23:494–502

    CAS  PubMed  Google Scholar 

  • Wilson BG, Wang X, Shen X et al (2010) Epigenetic antagonism between Polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18:316–328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woo CJ, Kharchenko PV, Daheron L et al (2010) A region of the human HOXD cluster that confers Polycomb-group responsiveness. Cell 140:99–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu C-Y, Kang H-Y, Yang W-L et al (2011) Critical role of monoubiquitination of histone H2AX protein in histone H2AX phosphorylation and DNA damage response. J Biol Chem 286:30806–30815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu X, Johansen JV, Helin K (2013) Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell 49:1134–1146

    CAS  PubMed  Google Scholar 

  • Xie R, Everett LJ, Lim H-W et al (2013) Dynamic chromatin remodeling mediated by Polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell 12:224–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu M, Long C, Chen X et al (2010) Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328:94–98

    CAS  PubMed  Google Scholar 

  • Xu K, Wu ZJ, Groner AC et al (2012) Ezh2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338:1465–1469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Lin C, Liu W et al (2011) ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147:773–788

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yap KL, Li S, Muñoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by Polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674

    CAS  PubMed Central  PubMed  Google Scholar 

  • You JS, De Carvalho DD, Dai C et al (2013) SNF5 is an essential executor of epigenetic regulation during differentiation. PLoS Genet 9:e1003459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu M, Mazor T, Huang H et al (2012) Direct recruitment of Polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol Cell 45:330–343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan W, Wu T, Fu H et al (2012) Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 337:971–975

    CAS  PubMed  Google Scholar 

  • Zee BM, Britton LMP, Wolle D et al (2012) Origins and formation of histone methylation across the human cell cycle. Mol Cell Biol 32:2503–2514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeitlinger J, Stark A, Kellis M et al (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39:1512–1516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Smolen GA, Palmer R et al (2004) SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans Polycomb group protein SOP-2. Nat Genet 36:507–511

    CAS  PubMed  Google Scholar 

  • Zhang J, Bonasio R, Strino F et al (2013) SFMBT1 functions with LSD1 to regulate expression of canonical histone genes and chromatin-related factors. Genes Dev 27:749–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao J, Sun BK, Erwin JA et al (2008a) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Lang G, Ito S et al (2008b) A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 29:92–101

    CAS  PubMed  Google Scholar 

  • Zhao J, Ohsumi TK, Kung JT et al (2010) Genome-wide identification of Polycomb-associated RNAs by RIP-seq. Mol Cell 40:939–953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou W, Zhu P, Wang J et al (2008) Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 29:69–80

    PubMed Central  PubMed  Google Scholar 

  • Zhou VW, Goren A, Bernstein BE (2010) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18

    PubMed  Google Scholar 

  • Zhou Q, Li T, Price DH (2012) RNA polymerase II elongation control. Annu Rev Biochem 81:119–143

    CAS  PubMed  Google Scholar 

  • Zhu B, Reinberg D (2011) Epigenetic inheritance: uncontested? Cell Res 21:435–441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu P, Zhou W, Wang J et al (2007) A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell 27:609–621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu J, Adli M, Zou JY et al (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152:642–654

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the lab is supported by grants BFU2010-18146 (MINECO), Fundación Areces, Oncocycle S2010/BMD2470 (CAM), and FP7-People-2011-ITN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vidal, M. (2014). Polycomb Complexes: Chromatin Regulators Required for Cell Diversity and Tissue Homeostasis. In: Bonifer, C., Cockerill, P. (eds) Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45198-0_5

Download citation

Publish with us

Policies and ethics