Skip to main content
Log in

Multilevel quantum chemical calculation of the enthalpy of formation of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]-tetrazine-4,6-di-N-dioxide

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The enthalpy of formation in the standard state for the promising novel energetic material [1,2,5]oxadiazolo[3,4-e][1,2,3,4]-tetrazine-4,6-di-N-dioxide (furazano-1,2,3,4-tetrazine-1,3-dioxide) was calculated using a theoretically calculated value of the heat of formation in the gas phase and am experimentally measured value of the heat (enthalpy) of sublimation. The theoretical calculations were performed using the G2, G3, and CBS-QB3 high-accuracy multilevel quantum chemical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Lempert, G. N. Nechiporenko, and G. P. Dolganova, “Dependence between the chemical composition, enthalpy, and specific impulse of a composite solid propellant in energetically optimized mixtures,” Khim. Fiz., 17, No. 7, 87–94 (1998).

    Google Scholar 

  2. V. F. Komarov and V. A. Shandakov, “Solid fuels, their properties, and applications,” Combust., Expl., Shock Waves, 35, No. 2, 139–143 (1999).

    Article  Google Scholar 

  3. M. B. Talawar, R. Sivabalan, S. N. Asthana, and H. Singh, “Novel ultrahigh-energy materials,” Combust., Expl., Shock Waves, 41, No. 3, 264–277 (2005).

    Article  Google Scholar 

  4. K. I. Rezchikova, A. M. Churakov, V. A. Shlyapochnikov, and V. A. Tartakovskii, “Spectroscopic investigation of condensed 1,2,3,4-tetrazine-1,3-dioxides,” Izv. Akad. Nauk, Ser. Khim., No. 11, 2187–2189 (1995).

    Google Scholar 

  5. K. I. Rezchikova, A. M. Churakov, V. A. Shlyapochnikov, and V. A. Tartakovskii, “1,2,3,4-tetrazine 1,3-di-N-oxides. Novel high nitrogen compounds: Vibrational spectra and structure,” Mend. Comm., No. 3, 100–102 (1995).

    Google Scholar 

  6. D. B. Lempert, G. N. Nechiporenko, and S. I. Soglasnova, “Dependence of the specific impulse of composite rocket propellants containing oxidizers based on C, N, and O atoms on the enthalpy of formation and elemental composition of the oxidizer,” Khim. Fiz., 23, No. 5, 75–81 (2004).

    Google Scholar 

  7. M. B. Talawar, R. Sivabalan, Anniyappan, et al., “Emerging trends in advanced high energy materials,” Combust., Expl., Shock Waves, 43, No. 1, 62–72 (2007).

    Article  Google Scholar 

  8. A. M. Churakov, S. L. Ioffe, and V. A. Tartakovskii, “Synthesis of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-di-N-oxide,” Mend. Comm., No. 6, 227–228 (1995).

    Google Scholar 

  9. V. P. Zelenov, S. V. Sysolyatin, and A. A. Lobanova, “Production and properties of diazene-N-oxides based on 3-amine-4-nitro furazane,” in: Energetic Condensed Systems, Proc. All-Russian Conf. (Chernogolovka), Yanus-K, Moscow (2002).

    Google Scholar 

  10. V. P. Zelenov, S. V. Sysolyatin, and A. A. Lobanova, “Criterion of formation of 1,2,3,4-tetrazine-1,3-dioxide cycle,” in: Energetic Condensed Systems, Proc. All-Russian Conf. (Chernogolovka), Yanus-K, Moscow (2004).

    Google Scholar 

  11. L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, “Gaussian-2 theory for molecular energies of first-and second-row compounds,” J. Chem. Phys., 94, 7221–7331 (1991).

    Article  ADS  Google Scholar 

  12. L. A. Curtiss, K. Raghavachari, P. C. Redfern, et al., “Gaussian-3 theory for molecules containing first-and second-row atoms,” J. Chem. Phys., 109, 7764–7786 (1998).

    Article  ADS  Google Scholar 

  13. J. Montgomery, M. Frisch, J. Ochtersky, and G. Peterson, “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” J. Chem. Phys., 110, 2822–2827 (1999).

    Article  ADS  Google Scholar 

  14. National Institute of Standards and Technology Database (www.nist.gov).

  15. A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  16. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, 37, 785–789 (1988).

    Article  ADS  Google Scholar 

  17. M. J. Frisch et al., Gaussian 98, Revision A.6, Gaussian, Inc., Pittsburgh (1998).

    Google Scholar 

  18. V. G. Kiselev and N. P. Gritsan, “Theoretical investigation of the effect of the chemical structure of nitroalkanes on the mechanism and kinetics of their thermal decomposition,” Khim. Fiz., 25, No. 10, 54–61 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 5, pp. 77–81, September–October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, V.G., Gritsan, N.P., Zarko, V.E. et al. Multilevel quantum chemical calculation of the enthalpy of formation of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]-tetrazine-4,6-di-N-dioxide. Combust Explos Shock Waves 43, 562–566 (2007). https://doi.org/10.1007/s10573-007-0074-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-007-0074-6

Key words

Navigation