Skip to main content

Advertisement

Log in

Dysbiosis and Alzheimer’s Disease: Cause or Treatment Opportunity?

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recent investigations have increased the interest on the connection between the microorganisms inhabiting the gut (gut microbiota) and human health. An imbalance of the intestinal bacteria representation (dysbiosis) could lead to different diseases, ranging from obesity and diabetes, to neurological disorders including Alzheimer’s disease (AD). The term “gut-brain axis” refers to a crosstalk between the brain and the gut involving multiple overlapping pathways, including the autonomic, neuroendocrine, and immune systems as well as bacterial metabolites and neuromodulatory molecules. Through this pathway, microbiota can influence the onset and progression of neuropathologies such as AD. This review discusses the possible interaction between the gut microbiome and AD, focusing on the role of gut microbiota in neuroinflammation, cerebrovascular degeneration and Aβ clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abraham D, Feher J, Scuderi GL, Szabo D, Dobolyi A, Cservenak M et al (2019) Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp Gerontol 115:122–131

    Article  CAS  PubMed  Google Scholar 

  • Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA et al (2018) Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 50(4):747–757

    Article  PubMed  Google Scholar 

  • Anstey KJ, Cherbuin N, Budge M, Young J (2011) Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 12(5):e426-37

    Article  CAS  PubMed  Google Scholar 

  • Arboleya S, Watkins C, Stanton C, Ross RP (2016) Gut bifidobacteria populations in human health and aging. Front Microbiol 7:1–9

    Article  CAS  Google Scholar 

  • Asti A, Gioglio L (2014) Can a bacterial endotoxin be a key factor in the kinetics of amyloid fibril formation? J Alzheimer’s Dis 39(1):169–79

    Article  CAS  Google Scholar 

  • Barreau F, Ferrier L, Fioramonti J, Bueno L (2004) Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats. Gut 53(4):501–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreau F, de Lahitte JD, Ferrier L, Frexinos J, Bueno L, Fioramonti J, (2006) Neonatal maternal deprivation promotes Nippostrongylus brasiliensis infection in adult rats. Brain Behav Immun 20(3):254–60

    Article  PubMed  Google Scholar 

  • Bartosch S, Fite A, Macfarlane GT, McMurdo MET (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70(6):3575–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermon S, Petriz B, Kajeniene A, Prestes J, Castell L, Franco OL (2015) The microbiota: An exercise immunology perspective. Exerc Immunol Rev 21:70–9

    PubMed  Google Scholar 

  • Bhattacharjee S, Zhao Y, Dua P, Rogaev EI, Lukiw WJ (2016) MicroRNA-34α-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration. PLoS One 11(3):e0150211

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C et al (2017) Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7(1):2426

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonfili L, Cecarini V, Cuccioloni M, Angeletti M, Berardi S, Scarpona S et al (2018) SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol Neurobiol 55(10):7987–8000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostanciklioğlu M (2018) Intestinal bacterial flora and Alzheimer’s disease. Neurophysiology 50:140–148

    Article  Google Scholar 

  • Bostanciklioğlu M (2019) The role of gut microbiota in pathogenesis of Alzheimer’s disease. J Applied Microbiol 127(4):954–967

    Article  Google Scholar 

  • Brandscheid C, Schuck F, Reinhardt S, Schäfer KH, Pietrzik CU, Grimm M et al (2017) Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimer’s Dis 56(2):775–788

    Article  CAS  Google Scholar 

  • Bressa C, Bailén-Andrino M, Pérez-Santiago J, González-Soltero R, Pérez M, Montalvo-Lominchar MG et al (2017) Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One 12(2):e0171352

    Article  PubMed  PubMed Central  Google Scholar 

  • Burokas A, Moloney RD, Dinan TG, Cryan JF (2015) Microbiota regulation of the mammalian gut-brain axis. Adv Appl Microbiol 91:1–62

    Article  CAS  PubMed  Google Scholar 

  • Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s Dement 12(6):719–32

    Article  Google Scholar 

  • Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–81

    Article  CAS  PubMed  Google Scholar 

  • Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209

    PubMed  PubMed Central  Google Scholar 

  • Carmody RN, Gerber GK, Luevano JM, Gatti DM, Somes L, Svenson KL et al (2015) Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17(1):72–84

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C et al (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60–68

    Article  CAS  PubMed  Google Scholar 

  • Cenit MC, Sanz Y, Codoñer-Franch P (2017) Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol 23(30):5486–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Yang X, Yang J, Lai G, Yong T, Tang X et al (2017) Prebiotic effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci 9:403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chunchai T, Thunapong W, Yasom S et al (2018) Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J Neuroinflammation 15(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Cummings JH, Pomare EW, Branch HWJ, Naylor CPE, MacFarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–63

    Article  CAS  PubMed  Google Scholar 

  • de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61

    Article  PubMed  Google Scholar 

  • Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB (2005) Obesity, diabetes and cognitive deficit: The Framingham heart study. Neurobiol Aging 26(Suppl 1):11–6

    Article  PubMed  Google Scholar 

  • Enzinger C, Fazekas F, Matthews PM, Ropele S, Schmidt H, Smith S et al (2005) Risk factors for progression of brain atrophy in aging: Six-year follow-up of normal subjects. Neurology 64(10):1704–11

    Article  CAS  PubMed  Google Scholar 

  • Erny D, De Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskelinen MH, Ngandu T, Helkala E-L, Tuomilehto J, Nissinen A, Soininen H et al (2008) Fat intake at midlife and cognitive impairment later in life: A population-based CAIDE study. Int J of Geriatr Psychiatry 23(7):741–7

    Article  Google Scholar 

  • Fenesi B, Fang H, Kovacevic A, Oremus M, Raina P, Heisz JJ (2017) Physical exercise moderates the relationship of apolipoprotein E (APOE) genotype and dementia risk: a population-based study. J Alzheimer’s Dis 56(1):297–303

    Article  CAS  Google Scholar 

  • Fernandez DM, Clemente JC, Giannarelli C (2018) Physical activity, immune system, and the microbiome in cardiovascular disease. Front in Physiol 9:763

    Article  Google Scholar 

  • Gareau MG (2014) (2014) Microbiota-gut-brain axis and cognitive function. Adv Exp Med Biol. 817:357–71

    Article  CAS  PubMed  Google Scholar 

  • Gareau MG, Jury J, Yang PC, Macqueen G, Perdue MH (2006) Neonatal maternal separation causes colonic dysfunction in rat pups including impaired host resistance. Pediatr Res 59(1):83–8

    Article  PubMed  Google Scholar 

  • Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH (2007) Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56(11):1522–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ et al (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60(3):307–17

    Article  PubMed  Google Scholar 

  • Gavini F, Cayuela C, Antoine JM, Lecoq C, Lefebvre B, Membré JM et al (2001) Differences in the distribution of bifidobacterial and enterobacterial species in human faecal microflora of three different (children, adults, elderly) age groups. Microb Ecol Health Dis 13(1):40–45

    Google Scholar 

  • González-Muniesa P, Mártinez-González MA, Hu FB, Després JP, Matsuzawa Y, Loos RJF et al (2017) Obesity. Nat Rev Dis Prim 3:17034

    Article  PubMed  Google Scholar 

  • Grant WB (2014) Trends in diet and Alzheimer’s disease during the nutrition transition in Japan and developing countries. J Alzheimer’s Dis 38(3):611–20

    Article  CAS  Google Scholar 

  • Griffiths EA, Duffy LC, Schanbacher FL, Qiao H, Dryja D, Leavens A et al (2004) In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice. Dig Dis Sci 49:579–589

    Article  CAS  PubMed  Google Scholar 

  • Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G et al (2017) Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 7:41802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauss-Wegrzyniak B, Wenk GL (2002) Beta-amyloid deposition in the brains of rats chronically infused with thiorphan or lipopolysaccharide: The role of ascorbic acid in the vehicle. Neurosci Lett 322(2):75–8

    Article  CAS  PubMed  Google Scholar 

  • He F, Ouwehand AC, Isolauri E, Hosoda M, Benno Y, Salminen S (2001) Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr Microbiol 43(5):351–4

    Article  CAS  PubMed  Google Scholar 

  • Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM (2018) Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 18(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Hopkins MJ, Macfarlane GT (2002) Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 51(5):448–454

    Article  CAS  PubMed  Google Scholar 

  • Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement 8(1):1–13

    Article  Google Scholar 

  • Ishikawa R, Fukushima H, Nakakita Y, Kado H, Kida S (2019) Dietary heat-killed Lactobacillus brevis SBC8803 (SBL88TM) improves hippocampus-dependent memory performance and adult hippocampal neurogenesis. Neuropsychopharmacol Rep 39(2):140–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacka FN, Cherbuin N, Anstey KJ, Sachdev P, Butterworth P (2015) Western diet is associated with a smaller hippocampus: A longitudinal investigation. BMC Med 13:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaeger LB, Dohgu S, Sultana R, Lynch JL, Owen JB, Erickson MA et al (2009) Lipopolysaccharide alters the blood-brain barrier transport of amyloid β protein: A mechanism for inflammation in the progression of Alzheimer’s disease. Brain Behav Immun 23(4):507–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M (2018) Implication of trimethylamine N-oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients 10(10):1398

    Article  PubMed Central  Google Scholar 

  • Jiang C, Li G, Huang P, Liu Z, Zhao B (2017) The gut microbiota and Alzheimer’s disease. J Alzheimer’s Dis 58(1):1–15

    Article  Google Scholar 

  • Kahn MS, Kranjac D, Alonzo CA, Haase JH, Cedillos RO, McLinden KA et al (2012) Prolonged elevation in hippocampal Aβ and cognitive deficits following repeated endotoxin exposure in the mouse. Behav Brain Res 229(1):176–84

    Article  CAS  PubMed  Google Scholar 

  • Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP (2015) Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front in Cell Neurosci 9:392

    Article  Google Scholar 

  • Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A et al (2017) Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 7(1):13510

    Article  PubMed  PubMed Central  Google Scholar 

  • Koutrolos M, Berer K, Kawakami N, Wekerle H, Krishnamoorthy G (2014) Treg cells mediate recovery from EAE by controlling effector T cell proliferation and motility in the CNS. Acta Neuropathol Commun 2:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowalski K, Mulak A (2019) Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil 25(1):48–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:1–10

    Article  Google Scholar 

  • Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G (2006) Development of Bacteroides 16S rRNA gene taqman-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72(6):4214–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh SJ, Morris MJ (2020) Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochim Biophys Acta Mol Basis Dis 1866(6):165767

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luca M, Luca A, Calandra C (2015) The role of oxidative damage in the pathogenesis and progression of Alzheimer’s disease and vascular dementia. Oxid Med Cell Longev 2015:504678

    Article  PubMed  PubMed Central  Google Scholar 

  • Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95(1):50–60

    Article  CAS  PubMed  Google Scholar 

  • Martins IJ, Binosha Fernando WMAD (2014) High fibre diets and Alzheimer’s disease. Food Nutr Sci 5:15

    Google Scholar 

  • Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16(6):345–57

    Article  CAS  PubMed  Google Scholar 

  • Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P et al (2016) Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 6:30028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2012) National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. Acta Neuropathol 123(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K et al (2018) Gut microbiome and aging: physiological and mechanistic insights. Nutr Healthy Aging 4(4):267–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Nam KN, Mounier A, Wolfe CM, Fitz NF, Carter AY, Castranio EL et al (2017) Effect of high fat diet on phenotype, brain transcriptome and lipidome in Alzheimer’s model mice. Sci Rep 7(1):4307

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Callaghan A, van Sinderen D (2016) Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 7:1–23

    Google Scholar 

  • O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho A-M, Quigley EMM et al (2009) Early life stress alters behavior, immunity, and microbiota in rats: Implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiat 65(3):263–7

    Article  PubMed  Google Scholar 

  • O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350(6265):1214–5

    Article  PubMed  Google Scholar 

  • Okubo H, Inagaki H, Gondo Y, Kamide K, Ikebe K, Masui Y et al (2017) Association between dietary patterns and cognitive function among 70-year-old Japanese elderly: A cross-sectional analysis of the SONIC study. Nutr J 16(1):56

    Article  PubMed  PubMed Central  Google Scholar 

  • Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53:1937–1942

    Article  CAS  PubMed  Google Scholar 

  • Owen N, Sparling PB, Healy GN, Dunstan DW, Matthews CE (2010) Sedentary behavior: Emerging evidence for a new health risk. Mayo Clin Proc 85(12):1138–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Parashar A, Udayabanu M (2017) Gut microbiota: implications in Parkinson’s disease. Parkinsonism Relat Disord 38:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC (2015) Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin ther 37(5):984–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pistollato F, Cano SS, Elio I, Vergara MM, Giampieri F, Battino M (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 74(10):624–34

    Article  PubMed  Google Scholar 

  • Profenno LA, Porsteinsson AP, Faraone SV (2010) Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol Psychiatr 67(6):505–12

    Article  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quigley EMM (2017) Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 17(12).

  • Rajilić-Stojanović M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047

    Article  PubMed  Google Scholar 

  • Rawlings AM, Sharrett AR, Schneider AL, Coresh J, Albert M, Couper D et al (2014) Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann Intern Med 161:785–793

    Article  PubMed  PubMed Central  Google Scholar 

  • Rincón D, Vaquero J, Hernando A et al (2014) Oral probiotic VSL#3 attenuates the circulatory disturbances of patients with cirrhosis and ascites. Liver Int 34(10):1504–1512

    Article  PubMed  Google Scholar 

  • Romo-Araiza A, Gutiérrez-Salmeán G, Galván EJ et al (2018) Probiotics and prebiotics as a therapeutic strategy to improve memory in a model of middle-aged rats. Front Aging Neurosci 10:416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romond MB, Colavizza M, Mullié C, Kalach N, Kremp O, Mielcarek C et al (2008) Does the intestinal bifidobacterial colonisation affect bacterial translocation? Anaerobe 14:43–48

    Article  CAS  PubMed  Google Scholar 

  • Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L et al (2016) Type i interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22(6):586–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabia S, Kivimaki M, Shipley MJ, Marmot MG, Singh-Manoux A (2009) Body mass index over the adult life course and cognition in late midlife: the Whitehall II cohort study. Am J Clin Nutr 89(2):601–7

    Article  CAS  PubMed  Google Scholar 

  • Sah SK, Lee C, Jang JH, Park GH (2017) Effect of high-fat diet on cognitive impairment in triple-transgenic mice model of Alzheimer’s disease. Biochem Biophys Res Commun 493(1):731–736

    Article  CAS  PubMed  Google Scholar 

  • Saksida T, Koprivica I, Vujičić M, Stošić-Grujičić S, Perović M, Kanazir S et al (2017) Impaired IL-17 production in gut-residing immune cells of 5xFAD mice with Alzheimer’s disease pathology. J Alzheimer’s Dis 61(2):619–630

    Article  Google Scholar 

  • Salazar C, Valdés-Varela L, González S, Gueimondede los Reyes-Gavilán MCG (2017) Nutrition and the gut microbiome in the elderly. Gut Microbes 8(2):82–97

    Article  CAS  PubMed  Google Scholar 

  • Samieri C, Okereke OI, Devore E, Grodstein F (2013) Long-term adherence to the mediterranean diet is associated with overall cognitive status, but not cognitive decline, in women. J Nutr 143(4):493–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanguinetti E, Collado MC, Marrachelli VG, Monleon D, Selma-Royo M, Pardo-Tendero MM et al (2018) Microbiome-metabolome signatures in mice genetically prone to develop dementia, fed a normal or fatty diet. Sci Rep 8(1):4907

    Article  PubMed  PubMed Central  Google Scholar 

  • Savignac HM, Tramullas M, Kiely B, Dinan TG, Cryan JF (2015) Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav Brain Res 287:59–72

    Article  CAS  PubMed  Google Scholar 

  • Sherwin E, Dinan TG, Cryan JF (2018) Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann N Y Acad Sci 1420(1):5–25

    Article  PubMed  Google Scholar 

  • Shivappa N, Hébert JR, Rietzschel ER, De Buyzere ML, Langlois M, Debruyne E et al (2015) Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br J Nutr 113(4):665–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spielman LJ, Gibson DL, Klegeris A (2018) Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int 120:149–163

    Article  CAS  PubMed  Google Scholar 

  • Studzinski CM, Li F, Bruce-Keller AJ, Fernandez-Kim SO, Zhang L, Weidner AM et al (2009) Effects of short-term Western diet on cerebral oxidative stress and diabetes related factors in APP x PS1 knock-in mice. J Neurochem 108(4):860–6

    Article  CAS  PubMed  Google Scholar 

  • Tasnim N, Abulizi N, Pither J, Hart MM, Gibson DL (2017) Linking the gut microbial ecosystem with the environment: Does gut health depend on where we live? Front Microbiol 8:1935

    Article  PubMed  PubMed Central  Google Scholar 

  • Underwood MA, German JB, Lebrilla CB, Mills DA (2015) Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res 77:229–235

    Article  CAS  PubMed  Google Scholar 

  • van Praag H (2018) Lifestyle factors and Alzheimer’s disease. Brain Plast 4(1):1–2

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC et al (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7(1):13537

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang HX, Wang YP (2016) Gut microbiota-brain axis. Chin Med J (Engl) 129(19):2373–80

    Article  Google Scholar 

  • Wang Z, Xiao G, Yao Y, Guo S, Lu K, Sheng Z (2006) The role of bifidobacteria in gut barrier function after thermal injury in rats. J Trauma 61:650–657

    Article  PubMed  Google Scholar 

  • Wang IK, Wu YY, Yang YF et al (2015) The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef Microbes 6(4):423–430

    Article  PubMed  Google Scholar 

  • Wang S, Huang XF, Zhang P, Newell KA, Wang H, Zheng K et al (2017) Dietary teasaponin ameliorates alteration of gut microbiota and cognitive decline in diet-induced obese mice. Sci Rep 7(1):12203

    Article  PubMed  PubMed Central  Google Scholar 

  • Wekerle H (2016) The gut-brain connection: Triggering of brain autoimmune disease by commensal gut bacteria. Rheumatol 55(suppl 2):ii68–ii75

    Article  Google Scholar 

  • Wheeler MJ, Dempsey PC, Grace MS, Ellis KA, Gardiner PA, Green DJ et al (2017) Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimers Dement 3(3):291–300

    Article  Google Scholar 

  • Wu SC, Cao ZS, Chang KM, Juang JL (2017) Intestinal microbial dysbiosis aggravates the progression of Alzheimer’s disease in Drosophila. Nat Commun 8(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S, Fisher-Hoch SP, Reininger BM, McCormick JB (2018) Association between fruit and vegetable intake and symptoms of mental health conditions in mexican americans. Heal Psychol 37(11):1059–1066

    Article  Google Scholar 

  • Wu J, Song X, Chen GC, Neelakantan N, Van Dam RM, Feng L et al (2019) Dietary pattern in midlife and cognitive impairment in late life: a prospective study in Chinese adults. Am J Clin Nutr 110(4):912–920

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu R, Wang QQ (2016) Towards understanding brain-gut-microbiome connections in Alzheimer’s disease. BMC Syst Biol 10(Suppl 3):63

    Article  PubMed  PubMed Central  Google Scholar 

  • Zapata HJ, Quagliarello VJ (2015) The microbiota and microbiome in aging: Potential implications in health and age-related diseases. J Am Geriatr Soc 63(4):776–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Zareie M, Johnson-Henry K, Jury J, Yang PC, Ngan BY, McKay DM et al (2006) Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 55(11):1553–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M et al (2009) Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 206(1–2):121–4

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Lukiw WJ (2018) Bacteroidetes Neurotoxins and Inflammatory Neurodegeneration. Mol Neurobiol 55(12):9100–9107

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Jaber V, Lukiw WJ (2017) Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): Detection of lipopolysaccharide (LPS) in AD hippocampus. Front Cell Infect Microbiol 7:318

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Cong L, Jaber V, Lukiw WJ (2017) Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease brain. Front Immunol 8:1064

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L et al (2018) Gut Microbiota is altered in patients with Alzheimer’s disease. J Alzheimer’s Dis 63(4):1337–1346

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MH Janeiro is a recipient of a fellowship from Ministerio de Ciencia, Innovación y Universidades (FPU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maite Solas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janeiro, M.H., Ramírez, M.J. & Solas, M. Dysbiosis and Alzheimer’s Disease: Cause or Treatment Opportunity?. Cell Mol Neurobiol 42, 377–387 (2022). https://doi.org/10.1007/s10571-020-01024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-01024-9

Keywords

Navigation