Skip to main content
Log in

The Regulation of GluN2A by Endogenous and Exogenous Regulators in the Central Nervous System

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders. This review will examine the regulation of GluN2A by endogenous and exogenous regulators in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akillioglu K, Yilmaz MB, Boga A, Binokay S, Kocaturk-Sel S (2015) Environmental enrichment does not reverse the effects of maternal deprivation on NMDAR and Balb/c mice behaviors. Brain Res 1624:479–488. doi:10.1016/j.brainres.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  • Amico-Ruvio SA, Murthy SE, Smith TP, Popescu GK (2011) Zinc effects on NMDA receptor gating kinetics. Biophys J 100(8):1910–1918. doi:10.1016/j.bpj.2011.02.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ary AW, Szumlinski KK (2007) Regional differences in the effects of withdrawal from repeated cocaine upon Homer and glutamate receptor expression: a two-species comparison. Brain Res 1184:295–305. doi:10.1016/j.brainres.2007.09.035

    Article  CAS  PubMed  Google Scholar 

  • Bajo M, Crawford EF, Roberto M, Madamba SG, Siggins GR (2006) Chronic morphine treatment alters expression of N-methyl-d-aspartate receptor subunits in the extended amygdala. J Neurosci Res 83(4):532–537. doi:10.1002/jnr.20756

    Article  CAS  PubMed  Google Scholar 

  • Balu DT, Coyle JT (2011) Glutamate receptor composition of the post-synaptic density is altered in genetic mouse models of NMDA receptor hypo- and hyperfunction. Brain Res 1392:1–7. doi:10.1016/j.brainres.2011.03.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bard L, Sainlos M, Bouchet D, Cousins S, Mikasova L, Breillat C, Stephenson FA, Imperiali B, Choquet D, Groc L (2010) Dynamic and specific interaction between synaptic NR2-NMDA receptor and PDZ proteins. Proc Natl Acad Sci USA 107(45):19561–19566. doi:10.1073/pnas.1002690107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barr JL, Forster GL, Unterwald EM (2014) Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression. J Neurochem 130(4):583–590. doi:10.1111/jnc.12764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellone C, Mameli M, Luscher C (2011) In utero exposure to cocaine delays postnatal synaptic maturation of glutamatergic transmission in the VTA. Nat Neurosci 14(11):1439–1446. doi:10.1038/nn.2930

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shahar O, Obara I, Ary AW, Ma N, Mangiardi MA, Medina RL, Szumlinski KK (2009) Extended daily access to cocaine results in distinct alterations in Homer 1b/c and NMDA receptor subunit expression within the medial prefrontal cortex. Synapse 63(7):598–609. doi:10.1002/syn.20640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortolato M, Godar SC, Melis M, Soggiu A, Roncada P, Casu A, Flore G, Chen K, Frau R, Urbani A, Castelli MP, Devoto P, Shih JC (2012) NMDARs mediate the role of monoamine oxidase A in pathological aggression. J Neurosci 32(25):8574–8582. doi:10.1523/JNEUROSCI.0225-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredy TW, Brown RE, Meaney MJ (2007) Effect of resource availability on biparental care, and offspring neural and behavioral development in the California mouse (Peromyscus californicus). Eur J Neurosci 25(2):567–575. doi:10.1111/j.1460-9568.2006.05266.x

    Article  PubMed  Google Scholar 

  • Burnet PW, Anderson PN, Chen L, Nikiforova N, Harrison PJ, Wood MJ (2011) D-amino acid oxidase knockdown in the mouse cerebellum reduces NR2A mRNA. Mol Cell Neurosci 46(1):167–175. doi:10.1016/j.mcn.2010.08.018

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Duan J, Wang X, Zhong X, Hu Z, Huang F, Wang H, Zhang J, Li F, Zhang J, Luo X, Li CQ (2014) Early enriched environment induces an increased conversion of proBDNF to BDNF in the adult rat’s hippocampus. Behav Brain Res 265:76–83. doi:10.1016/j.bbr.2014.02.022

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Hsiao YH, Chen YW, Yu YJ, Gean PW (2015) Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice. Hippocampus 25(4):474–485. doi:10.1002/hipo.22384

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Moshaver A, Raymond LA (1997) Differential sensitivity of recombinant N-methyl-d-aspartate receptor subtypes to zinc inhibition. Mol Pharmacol 51(6):1015–1023

    CAS  PubMed  Google Scholar 

  • Choi YB, Lipton SA (1999) Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23(1):171–180

    Article  CAS  PubMed  Google Scholar 

  • Choi YB, Tenneti L, Le DA, Ortiz J, Bai G, Chen HS, Lipton SA (2000) Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci 3(1):15–21. doi:10.1038/71090

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Chen HV, Lipton SA (2001) Three pairs of cysteine residues mediate both redox and Zn2+ modulation of the NMDA receptor. J Neurosci 21(2):392–400

    CAS  PubMed  Google Scholar 

  • Chowanadisai W, Kelleher SL, Lonnerdal B (2005) Maternal zinc deficiency reduces NMDA receptor expression in neonatal rat brain, which persists into early adulthood. J Neurochem 94(2):510–519. doi:10.1111/j.1471-4159.2005.03246.x

    Article  CAS  PubMed  Google Scholar 

  • Chutabhakdikul N, Surakul P (2013) Prenatal stress increased Snk Polo-like kinase 2, SCF beta-TrCP ubiquitin ligase and ubiquitination of SPAR in the hippocampus of the offspring at adulthood. Int J Dev Neurosci 31(7):560–567. doi:10.1016/j.ijdevneu.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  • Corson J, Nahmani M, Lubarsky K, Badr N, Wright C, Erisir A (2009) Sensory activity differentially modulates N-methyl-d-aspartate receptor subunits 2A and 2B in cortical layers. Neuroscience 163(3):920–932. doi:10.1016/j.neuroscience.2009.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousins SL, Stephenson FA (2012) Identification of N-methyl-d-aspartic acid (NMDA) receptor subtype-specific binding sites that mediate direct interactions with scaffold protein PSD-95. J Biol Chem 287(16):13465–13476. doi:10.1074/jbc.M111.292862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousins SL, Papadakis M, Rutter AR, Stephenson FA (2008) Differential interaction of NMDA receptor subtypes with the post-synaptic density-95 family of membrane associated guanylate kinase proteins. J Neurochem 104(4):903–913. doi:10.1111/j.1471-4159.2007.05067.x

    Article  CAS  PubMed  Google Scholar 

  • Delint-Ramirez I, Fernandez E, Bayes A, Kicsi E, Komiyama NH, Grant SG (2010) In vivo composition of NMDA receptor signaling complexes differs between membrane subdomains and is modulated by PSD-95 and PSD-93. J Neurosci 30(24):8162–8170. doi:10.1523/JNEUROSCI.1792-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson R, Peterson BK, Banks P, Simillis C, Martin JC, Valenzuela CA, Maze M, Franks NP (2007) Competitive inhibition at the glycine site of the N-methyl-d-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology 107(5):756–767. doi:10.1097/01.anes.0000287061.77674.71

    Article  CAS  PubMed  Google Scholar 

  • Doboszewska U, Sowa-Kucma M, Mlyniec K, Pochwat B, Holuj M, Ostachowicz B, Pilc A, Nowak G, Szewczyk B (2015) Zinc deficiency in rats is associated with up-regulation of hippocampal NMDA receptor. Prog Neuropsychopharmacol Biol Psychiatry 56:254–263. doi:10.1016/j.pnpbp.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  • Dong YN, Waxman EA, Lynch DR (2004) Interactions of postsynaptic density-95 and the NMDA receptor 2 subunit control calpain-mediated cleavage of the NMDA receptor. J Neurosci 24(49):11035–11045. doi:10.1523/JNEUROSCI.3722-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Zhong W, Tian M, Han H, Mao R, Cao J, Sui N, Xu T, Luo J, Xu L (2008) Morphine withdrawal affects both delayed-escape behaviour in Morris water maze and hippocampal NR2A/2B expression ratio. Brain Res 1207:164–173. doi:10.1016/j.brainres.2008.02.055

    Article  CAS  PubMed  Google Scholar 

  • Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21(15):5546–5558

    CAS  PubMed  Google Scholar 

  • Dunah AW, Sirianni AC, Fienberg AA, Bastia E, Schwarzschild MA, Standaert DG (2004) Dopamine D1-dependent trafficking of striatal N-methyl-d-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol 65(1):121–129. doi:10.1124/mol.65.1.121

    Article  CAS  PubMed  Google Scholar 

  • Elias GM, Elias LA, Apostolides PF, Kriegstein AR, Nicoll RA (2008) Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development. Proc Natl Acad Sci USA 105(52):20953–20958. doi:10.1073/pnas.0811025106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erreger K, Traynelis SF (2005) Allosteric interaction between zinc and glutamate binding domains on NR2A causes desensitization of NMDA receptors. J Physiol 569(Pt 2):381–393. doi:10.1113/jphysiol.2005.095497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erreger K, Traynelis SF (2008) Zinc inhibition of rat NR1/NR2A N-methyl-d-aspartate receptors. J Physiol 586(3):763–778. doi:10.1113/jphysiol.2007.143941

    Article  CAS  PubMed  Google Scholar 

  • Fang M, Tao YX, He F, Zhang M, Levine CF, Mao P, Tao F, Chou CL, Sadegh-Nasseri S, Johns RA (2003) Synaptic PDZ domain-mediated protein interactions are disrupted by inhalational anesthetics. J Biol Chem 278(38):36669–36675. doi:10.1074/jbc.M303520200

    Article  CAS  PubMed  Google Scholar 

  • Fayyazuddin A, Villarroel A, Le Goff A, Lerma J, Neyton J (2000) Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 25(3):683–694

    Article  CAS  PubMed  Google Scholar 

  • Fong DK, Rao A, Crump FT, Craig AM (2002) Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II. J Neurosci 22(6):2153–2164

    CAS  PubMed  Google Scholar 

  • Fukaya M, Kato A, Lovett C, Tonegawa S, Watanabe M (2003) Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proc Natl Acad Sci USA 100(8):4855–4860. doi:10.1073/pnas.0830996100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C, Frausto SF, Guedea AL, Tronson NC, Jovasevic V, Leaderbrand K, Corcoran KA, Guzman YF, Swanson GT, Radulovic J (2011) IQGAP1 regulates NR2A signaling, spine density, and cognitive processes. J Neurosci 31(23):8533–8542. doi:10.1523/JNEUROSCI.1300-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardoni F, Bellone C, Cattabeni F, Di Luca M (2001) Protein kinase C activation modulates alpha-calmodulin kinase II binding to NR2A subunit of N-methyl-d-aspartate receptor complex. J Biol Chem 276(10):7609–7613. doi:10.1074/jbc.M009922200

    Article  CAS  PubMed  Google Scholar 

  • Gavazzo P, Guida P, Zanardi I, Marchetti C (2009) Molecular determinants of multiple effects of nickel on NMDA receptor channels. Neurotox Res 15(1):38–48. doi:10.1007/s12640-009-9003-7

    Article  CAS  PubMed  Google Scholar 

  • Giannakopoulos M, Kouvelas ED, Mitsacos A (2010) Experience-dependent regulation of NMDA receptor subunit composition and phosphorylation in the retina and visual cortex. Invest Ophthalmol Vis Sci 51(4):1817–1822. doi:10.1167/iovs.09-4438

    Article  PubMed  Google Scholar 

  • Gielen M, Le Goff A, Stroebel D, Johnson JW, Neyton J, Paoletti P (2008) Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition. Neuron 57(1):80–93. doi:10.1016/j.neuron.2007.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodfellow MJ, Abdulla KA, Lindquist DH (2016) Neonatal ethanol exposure impairs trace fear conditioning and alters NMDA receptor subunit expression in adult male and female rats. Alcohol Clin Exp Res 40(2):309–318. doi:10.1111/acer.12958

    Article  CAS  PubMed  Google Scholar 

  • Grant ER, Bacskai BJ, Anegawa NJ, Pleasure DE, Lynch DR (1998) Opposing contributions of NR1 and NR2 to protein kinase C modulation of NMDA receptors. J Neurochem 71(4):1471–1481

    Article  CAS  PubMed  Google Scholar 

  • Grant ER, Guttmann RP, Seifert KM, Lynch DR (2001) A region of the rat N-methyl-d-aspartate receptor 2A subunit that is sufficient for potentiation by phorbol esters. Neurosci Lett 310(1):9–12

    Article  CAS  PubMed  Google Scholar 

  • Gronwald C, Vegh V, Hollmann MW, Hahnenkamp A, Garaj V, Hahnenkamp K (2012) The inhibitory potency of local anesthetics on NMDA receptor signalling depends on their structural features. Eur J Pharmacol 674(1):13–19. doi:10.1016/j.ejphar.2011.10.035

    Article  CAS  PubMed  Google Scholar 

  • Grosshans DR, Browning MD (2001) Protein kinase C activation induces tyrosine phosphorylation of the NR2A and NR2B subunits of the NMDA receptor. J Neurochem 76(3):737–744

    Article  CAS  PubMed  Google Scholar 

  • Guilarte TR, McGlothan JL (1998) Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure. Brain Res 790(1–2):98–107

    Article  CAS  PubMed  Google Scholar 

  • Hafenbreidel M, Rafa Todd C, Twining RC, Tuscher JJ, Mueller D (2014) Bidirectional effects of inhibiting or potentiating NMDA receptors on extinction after cocaine self-administration in rats. Psychopharmacology 231(24):4585–4594. doi:10.1007/s00213-014-3607-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahnenkamp K, Durieux ME, Hahnenkamp A, Schauerte SK, Hoenemann CW, Vegh V, Theilmeier G, Hollmann MW (2006) Local anaesthetics inhibit signalling of human NMDA receptors recombinantly expressed in Xenopus laevis oocytes: role of protein kinase C. Br J Anaesth 96(1):77–87. doi:10.1093/bja/aei271

    Article  CAS  PubMed  Google Scholar 

  • Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW (2006) Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 26(17):4690–4700. doi:10.1523/JNEUROSCI.0792-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Han LC, Yao LN, Wu SX, Yang YH, Xu LX, Chai W (2010) The effect of ketamine on N-methyl-d-aspartate receptor subunit expression in neonatal rats. Eur J Anaesthesiol 27(2):181–186. doi:10.1097/EJA.0b013e328330d453

    Article  CAS  PubMed  Google Scholar 

  • Hansen KB, Ogden KK, Yuan H, Traynelis SF (2014) Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81(5):1084–1096. doi:10.1016/j.neuron.2014.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. doi:10.1038/nrn2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins LM, Prybylowski K, Chang K, Moussan C, Stephenson FA, Wenthold RJ (2004) Export from the endoplasmic reticulum of assembled N-methyl-d-aspartic acid receptors is controlled by a motif in the c terminus of the NR2 subunit. J Biol Chem 279(28):28903–28910. doi:10.1074/jbc.M402599200

    Article  CAS  PubMed  Google Scholar 

  • Hemby SE, Horman B, Tang W (2005) Differential regulation of ionotropic glutamate receptor subunits following cocaine self-administration. Brain Res 1064(1–2):75–82. doi:10.1016/j.brainres.2005.09.051

    Article  CAS  PubMed  Google Scholar 

  • Hollmann MW, Liu HT, Hoenemann CW, Liu WH, Durieux ME (2001) Modulation of NMDA receptor function by ketamine and magnesium. Part II: interactions with volatile anesthetics. Anesth Analg 92(5):1182–1191

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Sheng L, Ze Y, Hong J, Zhou Y, Wang L, Liu D, Yu X, Xu B, Zhao X, Ze X (2015) Suppression of neurite outgrowth of primary cultured hippocampal neurons is involved in impairment of glutamate metabolism and NMDA receptor function caused by nanoparticulate TiO2. Biomaterials 53:76–85. doi:10.1016/j.biomaterials.2015.02.067

    Article  CAS  PubMed  Google Scholar 

  • Honse Y, Ren H, Lipsky RH, Peoples RW (2004) Sites in the fourth membrane-associated domain regulate alcohol sensitivity of the NMDA receptor. Neuropharmacology 46(5):647–654. doi:10.1016/j.neuropharm.2003.11.006

    Article  CAS  PubMed  Google Scholar 

  • Hu JL, Liu G, Li YC, Gao WJ, Huang YQ (2010) Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons. Mol Brain 3:20. doi:10.1186/1756-6606-3-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes BA, Woodward JJ (2015) Disruption of S2-M4 linker coupling reveals novel subunit-specific contributions to N-methyl-d-aspartate receptor function and ethanol sensitivity. Neuropharmacology 105:96–105. doi:10.1016/j.neuropharm.2015.11.009

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Mishina M, Ueda H (2003) Locus-specific rescue of GluRepsilon1 NMDA receptors in mutant mice identifies the brain regions important for morphine tolerance and dependence. J Neurosci 23(16):6529–6536

    CAS  PubMed  Google Scholar 

  • Iwamoto T, Yamada Y, Hori K, Watanabe Y, Sobue K, Inui M (2004) Differential modulation of NR1-NR2A and NR1-NR2B subtypes of NMDA receptor by PDZ domain-containing proteins. J Neurochem 89(1):100–108. doi:10.1046/j.1471-4159.2003.02293.x

    Article  CAS  PubMed  Google Scholar 

  • Jackson MF, Konarski JZ, Weerapura M, Czerwinski W, MacDonald JF (2006) Protein kinase C enhances glycine-insensitive desensitization of NMDA receptors independently of previously identified protein kinase C sites. J Neurochem 96(6):1509–1518. doi:10.1111/j.1471-4159.2006.03651.x

    Article  CAS  PubMed  Google Scholar 

  • Jocoy EL, Andre VM, Cummings DM, Rao SP, Wu N, Ramsey AJ, Caron MG, Cepeda C, Levine MS (2011) Dissecting the contribution of individual receptor subunits to the enhancement of N-methyl-d-aspartate currents by dopamine D1 receptor activation in striatum. Front Syst Neurosci 5:28. doi:10.3389/fnsys.2011.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia LV, Pitcher GM, Pelkey KA, Salter MW (2006) PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex. EMBO J 25(20):4971–4982. doi:10.1038/sj.emboj.7601342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kash TL, Matthews RT, Winder DG (2008) Alcohol inhibits NR2B-containing NMDA receptors in the ventral bed nucleus of the stria terminalis. Neuropsychopharmacology 33(6):1379–1390. doi:10.1038/sj.npp.1301504

    Article  CAS  PubMed  Google Scholar 

  • Kervern M, Silvestre de Ferron B, Alaux-Cantin S, Fedorenko O, Antol J, Naassila M, Pierrefiche O (2015) Aberrant NMDA-dependent LTD after perinatal ethanol exposure in young adult rat hippocampus. Hippocampus 25(8):912–923. doi:10.1002/hipo.22414

    Article  CAS  PubMed  Google Scholar 

  • Kim TY, Hwang JJ, Yun SH, Jung MW, Koh JY (2002) Augmentation by zinc of NMDA receptor-mediated synaptic responses in CA1 of rat hippocampal slices: mediation by Src family tyrosine kinases. Synapse 46(2):49–56. doi:10.1002/syn.10118

    Article  CAS  PubMed  Google Scholar 

  • Kim EC, Lee MJ, Shin SY, Seol GH, Han SH, Yee J, Kim C, Min SS (2013) Phorbol 12-myristate 13-acetate enhances long-term potentiation in the hippocampus through activation of protein kinase Cdelta and epsilon. Korean J Physiol Pharmacol 17(1):51–56. doi:10.4196/kjpp.2013.17.1.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knox R, Zhao C, Miguel-Perez D, Wang S, Yuan J, Ferriero D, Jiang X (2013) Enhanced NMDA receptor tyrosine phosphorylation and increased brain injury following neonatal hypoxia-ischemia in mice with neuronal Fyn overexpression. Neurobiol Dis 51:113–119. doi:10.1016/j.nbd.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  • Kopp C, Longordo F, Luthi A (2007) Experience-dependent changes in NMDA receptor composition at mature central synapses. Neuropharmacology 53(1):1–9. doi:10.1016/j.neuropharm.2007.03.014

    Article  CAS  PubMed  Google Scholar 

  • Kozela E, Popik P (2007) A complete analysis of NMDA receptor subunits in periaqueductal grey and ventromedial medulla of morphine tolerant mice. Drug Alcohol Depend 86(2–3):290–293. doi:10.1016/j.drugalcdep.2006.06.018

    Article  CAS  PubMed  Google Scholar 

  • Kusakawa G, Saito T, Onuki R, Ishiguro K, Kishimoto T, Hisanaga S (2000) Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J Biol Chem 275(22):17166–17172. doi:10.1074/jbc.M907757199

    Article  CAS  PubMed  Google Scholar 

  • Ladepeche L, Dupuis JP, Bouchet D, Doudnikoff E, Yang L, Campagne Y, Bezard E, Hosy E, Groc L (2013) Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors. Proc Natl Acad Sci USA 110(44):18005–18010. doi:10.1073/pnas.1310145110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laeremans A, Sabanov V, Ahmed T, Nys J, Van de Plas B, Vinken K, Woolley DG, Gantois I, D’Hooge R, Arckens L, Balschun D (2015) Distinct and simultaneously active plasticity mechanisms in mouse hippocampus during different phases of Morris water maze training. Brain Struct Funct 220(3):1273–1290. doi:10.1007/s00429-014-0722-z

    Article  PubMed  Google Scholar 

  • Lee YA, Goto Y (2011) Chronic stress modulation of prefrontal cortical NMDA receptor expression disrupts limbic structure-prefrontal cortex interaction. Eur J Neurosci 34(3):426–436. doi:10.1111/j.1460-9568.2011.07750.x

    Article  PubMed  Google Scholar 

  • Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111(2):219–230

    Article  CAS  PubMed  Google Scholar 

  • Lei G, Anastasio NC, Fu Y, Neugebauer V, Johnson KM (2009) Activation of dopamine D1 receptors blocks phencyclidine-induced neurotoxicity by enhancing N-methyl-d-aspartate receptor-mediated synaptic strength. J Neurochem 109(4):1017–1030. doi:10.1111/j.1471-4159.2009.06030.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard AS, Hell JW (1997) Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-d-aspartate receptors at different sites. J Biol Chem 272(18):12107–12115

    Article  CAS  PubMed  Google Scholar 

  • Li BS, Sun MK, Zhang L, Takahashi S, Ma W, Vinade L, Kulkarni AB, Brady RO, Pant HC (2001) Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci USA 98(22):12742–12747. doi:10.1073/pnas.211428098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YC, Liu G, Hu JL, Gao WJ, Huang YQ (2010) Dopamine D(1) receptor-mediated enhancement of NMDA receptor trafficking requires rapid PKC-dependent synaptic insertion in the prefrontal neurons. J Neurochem 114(1):62–73. doi:10.1111/j.1471-4159.2010.06720.x

    CAS  PubMed  Google Scholar 

  • Liao GY, Kreitzer MA, Sweetman BJ, Leonard JP (2000) The postsynaptic density protein PSD-95 differentially regulates insulin- and Src-mediated current modulation of mouse NMDA receptors expressed in Xenopus oocytes. J Neurochem 75(1):282–287

    Article  CAS  PubMed  Google Scholar 

  • Liaw WJ, Zhu XG, Yaster M, Johns RA, Gauda EB, Tao YX (2008) Distinct expression of synaptic NR2A and NR2B in the central nervous system and impaired morphine tolerance and physical dependence in mice deficient in postsynaptic density-93 protein. Mol Pain 4:45. doi:10.1186/1744-8069-4-45

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichnerova K, Kaniakova M, Park SP, Skrenkova K, Wang YX, Petralia RS, Suh YH, Horak M (2015) Two N-glycosylation sites in the GluN1 subunit are essential for releasing N-methyl-d-aspartate (NMDA) receptors from the endoplasmic reticulum. J Biol Chem 290(30):18379–18390. doi:10.1074/jbc.M115.656546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Skeberdis VA, Francesconi A, Bennett MV, Zukin RS (2004) Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J Neurosci 24(45):10138–10148. doi:10.1523/JNEUROSCI.3159-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Jover-Mengual T, Wong J, Bennett MV, Zukin RS (2006) PSD-95 and PKC converge in regulating NMDA receptor trafficking and gating. Proc Natl Acad Sci USA 103(52):19902–19907. doi:10.1073/pnas.0609924104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CS, Tao PL, Jong YJ, Chen WF, Yang CH, Huang LT, Chao CF, Yang SN (2009) Prenatal morphine alters the synaptic complex of postsynaptic density 95 with N-methyl-d-aspartate receptor subunit in hippocampal CA1 subregion of rat offspring leading to long-term cognitive deficits. Neuroscience 158(4):1326–1337. doi:10.1016/j.neuroscience.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Hollmann MW, Liu WH, Hoenemann CW, Durieux ME (2001) Modulation of NMDA receptor function by ketamine and magnesium: Part I. Anesth Analg 92(5):1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Longordo F, Kopp C, Mishina M, Lujan R, Luthi A (2009) NR2A at CA1 synapses is obligatory for the susceptibility of hippocampal plasticity to sleep loss. J Neurosci 29(28):9026–9041. doi:10.1523/JNEUROSCI.1215-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longordo F, Fan J, Steimer T, Kopp C, Luthi A (2011) Do mice habituate to “gentle handling?” A comparison of resting behavior, corticosterone levels and synaptic function in handled and undisturbed C57BL/6J mice. Sleep 34(5):679–681

    PubMed  PubMed Central  Google Scholar 

  • Losi G, Prybylowski K, Fu Z, Luo J, Wenthold RJ, Vicini S (2003) PSD-95 regulates NMDA receptors in developing cerebellar granule neurons of the rat. J Physiol 548(Pt 1):21–29. doi:10.1113/jphysiol.2002.034918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low CM, Zheng F, Lyuboslavsky P, Traynelis SF (2000) Molecular determinants of coordinated proton and zinc inhibition of N-methyl-d-aspartate NR1/NR2A receptors. Proc Natl Acad Sci USA 97(20):11062–11067. doi:10.1073/pnas.180307497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Dempsey J, Shaham Y, Hope BT (2005) Differential long-term neuroadaptations of glutamate receptors in the basolateral and central amygdala after withdrawal from cocaine self-administration in rats. J Neurochem 94(1):161–168. doi:10.1111/j.1471-4159.2005.03178.x

    Article  CAS  PubMed  Google Scholar 

  • Luo JH, Qiu ZQ, Shu WQ, Zhang YY, Zhang L, Chen JA (2009) Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol Lett 184(2):121–125. doi:10.1016/j.toxlet.2008.10.029

    Article  CAS  PubMed  Google Scholar 

  • Luo JH, Qiu ZQ, Zhang L, Shu WQ (2012) Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus. Toxicol Lett 211(1):39–44. doi:10.1016/j.toxlet.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  • Manzerra P, Behrens MM, Canzoniero LM, Wang XQ, Heidinger V, Ichinose T, Yu SP, Choi DW (2001) Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc Natl Acad Sci USA 98(20):11055–11061. doi:10.1073/pnas.191353598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetti C, Gavazzo P (2005) NMDA receptors as targets of heavy metal interaction and toxicity. Neurotox Res 8(3–4):245–258

    Article  CAS  PubMed  Google Scholar 

  • Martin G, Guadano-Ferraz A, Morte B, Ahmed S, Koob GF, De Lecea L, Siggins GR (2004) Chronic morphine treatment alters N-methyl-d-aspartate receptors in freshly isolated neurons from nucleus accumbens. J Pharmacol Exp Ther 311(1):265–273. doi:10.1124/jpet.104.067504

    Article  CAS  PubMed  Google Scholar 

  • Martisova E, Solas M, Horrillo I, Ortega JE, Meana JJ, Tordera RM, Ramirez MJ (2012) Long lasting effects of early-life stress on glutamatergic/GABAergic circuitry in the rat hippocampus. Neuropharmacology 62(5–6):1944–1953. doi:10.1016/j.neuropharm.2011.12.019

    Article  CAS  PubMed  Google Scholar 

  • Mauceri D, Gardoni F, Marcello E, Di Luca M (2007) Dual role of CaMKII-dependent SAP97 phosphorylation in mediating trafficking and insertion of NMDA receptor subunit NR2A. J Neurochem 100(4):1032–1046. doi:10.1111/j.1471-4159.2006.04267.x

    Article  CAS  PubMed  Google Scholar 

  • McIlhinney RA, Le Bourdelles B, Molnar E, Tricaud N, Streit P, Whiting PJ (1998) Assembly intracellular targeting and cell surface expression of the human N-methyl-d-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 37(10–11):1355–1367

    Article  CAS  PubMed  Google Scholar 

  • Melamed O, Levav-Rabkin T, Zukerman C, Clarke G, Cryan JF, Dinan TG, Grossman Y, Golan HM (2014) Long-lasting glutamatergic modulation induced by neonatal GABA enhancement in mice. Neuropharmacology 79:616–625. doi:10.1016/j.neuropharm.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  • Minatohara K, Ichikawa SH, Seki T, Fujiyoshi Y, Doi T (2013) Ligand binding of PDZ domains has various roles in the synaptic clustering of SAP102 and PSD-95. Neurosci Lett 533:44–49. doi:10.1016/j.neulet.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  • Mu Y, Otsuka T, Horton AC, Scott DB, Ehlers MD (2003) Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40(3):581–594

    Article  CAS  PubMed  Google Scholar 

  • Murray F, Harrison NJ, Grimwood S, Bristow LJ, Hutson PH (2007) Nucleus accumbens NMDA receptor subunit expression and function is enhanced in morphine-dependent rats. Eur J Pharmacol 562(3):191–197. doi:10.1016/j.ejphar.2007.01.027

    Article  CAS  PubMed  Google Scholar 

  • Nai Q, Li S, Wang SH, Liu J, Lee FJ, Frankland PW, Liu F (2010) Uncoupling the D1-N-methyl-d-aspartate (NMDA) receptor complex promotes NMDA-dependent long-term potentiation and working memory. Biol Psychiatry 67(3):246–254. doi:10.1016/j.biopsych.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  • Neal AP, Worley PF, Guilarte TR (2011) Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology 32(2):281–289. doi:10.1016/j.neuro.2010.12.013

    Article  CAS  PubMed  Google Scholar 

  • Nihei MK, Guilarte TR (1999) NMDAR-2A subunit protein expression is reduced in the hippocampus of rats exposed to Pb2+ during development. Brain Res Mol Brain Res 66(1–2):42–49

    Article  CAS  PubMed  Google Scholar 

  • Nona CN, Li R, Nobrega JN (2014) Altered NMDA receptor subunit gene expression in brains of mice showing high vs. low sensitization to ethanol. Behav Brain Res 260:58–66. doi:10.1016/j.bbr.2013.11.037

    Article  CAS  PubMed  Google Scholar 

  • Ogata J, Shiraishi M, Namba T, Smothers CT, Woodward JJ, Harris RA (2006) Effects of anesthetics on mutant N-methyl-d-aspartate receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther 318(1):434–443. doi:10.1124/jpet.106.101691

    Article  CAS  PubMed  Google Scholar 

  • Omelchenko IA, Nelson CS, Allen CN (1997) Lead inhibition of N-methyl-d-aspartate receptors containing NR2A, NR2C and NR2D subunits. J Pharmacol Exp Ther 282(3):1458–1464

    CAS  PubMed  Google Scholar 

  • Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci 17(15):5711–5725

    CAS  PubMed  Google Scholar 

  • Paoletti P, Perin-Dureau F, Fayyazuddin A, Le Goff A, Callebaut I, Neyton J (2000) Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor subunit. Neuron 28(3):911–925

    Article  CAS  PubMed  Google Scholar 

  • Pian JP, Criado JR, Milner R, Ehlers CL (2010) N-methyl-d-aspartate receptor subunit expression in adult and adolescent brain following chronic ethanol exposure. Neuroscience 170(2):645–654. doi:10.1016/j.neuroscience.2010.06.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickering C, Gustafsson L, Cebere A, Nylander I, Liljequist S (2006) Repeated maternal separation of male Wistar rats alters glutamate receptor expression in the hippocampus but not the prefrontal cortex. Brain Res 1099(1):101–108. doi:10.1016/j.brainres.2006.04.136

    Article  CAS  PubMed  Google Scholar 

  • Pomierny-Chamiolo L, Miszkiel J, Frankowska M, Pomierny B, Niedzielska E, Smaga I, Fumagalli F, Filip M (2015) Withdrawal from cocaine self-administration and yoked cocaine delivery dysregulates glutamatergic mGlu5 and NMDA receptors in the rat brain. Neurotox Res 27(3):246–258. doi:10.1007/s12640-014-9502-z

    Article  CAS  PubMed  Google Scholar 

  • Qiang M, Denny AD, Ticku MK (2007) Chronic intermittent ethanol treatment selectively alters N-methyl-d-aspartate receptor subunit surface expression in cultured cortical neurons. Mol Pharmacol 72(1):95–102. doi:10.1124/mol.106.033043

    Article  CAS  PubMed  Google Scholar 

  • Qiu S, Zhang XM, Cao JY, Yang W, Yan YG, Shan L, Zheng J, Luo JH (2009) An endoplasmic reticulum retention signal located in the extracellular amino-terminal domain of the NR2A subunit of N-Methyl-d-aspartate receptors. J Biol Chem 284(30):20285–20298. doi:10.1074/jbc.M109.004960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Chavez LA, Rendon-Lopez CR, Zepeda A, Silva-Adaya D, Del Razo LM, Gonsebatt ME (2015) Neurological effects of inorganic arsenic exposure: altered cysteine/glutamate transport, NMDA expression and spatial memory impairment. Front Cell Neurosci 9:21. doi:10.3389/fncel.2015.00021

    Article  PubMed  PubMed Central  Google Scholar 

  • Rauner C, Kohr G (2011) Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-d-aspartate receptor population in adult hippocampal synapses. J Biol Chem 286(9):7558–7566. doi:10.1074/jbc.M110.182600

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Honse Y, Peoples RW (2003) A site of alcohol action in the fourth membrane-associated domain of the N-methyl-d-aspartate receptor. J Biol Chem 278(49):48815–48820. doi:10.1074/jbc.M302097200

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Salous AK, Paul JM, Lipsky RH, Peoples RW (2007) Mutations at F637 in the NMDA receptor NR2A subunit M3 domain influence agonist potency, ion channel gating and alcohol action. Br J Pharmacol 151(6):749–757. doi:10.1038/sj.bjp.0707254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren H, Salous AK, Paul JM, Lamb KA, Dwyer DS, Peoples RW (2008) Functional interactions of alcohol-sensitive sites in the N-methyl-d-aspartate receptor M3 and M4 domains. J Biol Chem 283(13):8250–8257. doi:10.1074/jbc.M705933200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren H, Zhao Y, Dwyer DS, Peoples RW (2012) Interactions among positions in the third and fourth membrane-associated domains at the intersubunit interface of the N-methyl-d-aspartate receptor forming sites of alcohol action. J Biol Chem 287(33):27302–27312. doi:10.1074/jbc.M111.338921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren H, Zhao Y, Wu M, Peoples RW (2013) A novel alcohol-sensitive position in the N-methyl-d-aspartate receptor GluN2A subunit M3 domain regulates agonist affinity and ion channel gating. Mol Pharmacol 84(4):501–510. doi:10.1124/mol.113.085993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reneau JC, Reyland ME, Phillips J, Kindy C, Popp RL (2009) Phorbol 12-myristate 13-acetate potentiation of N-methyl-d-aspartate-induced currents in primary cultured cerebellar granule cells is mediated by protein kinase C alpha. J Pharmacol Exp Ther 330(2):641–649. doi:10.1124/jpet.109.153163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridge JP, Ho AM, Innes DJ, Dodd PR (2008) The expression of NMDA receptor subunit mRNA in human chronic alcoholics. Ann N Y Acad Sci 1139:10–19. doi:10.1196/annals.1432.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA (2002) Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 7(6):609–616. doi:10.1038/sj.mp.4001036

    Article  CAS  PubMed  Google Scholar 

  • Roh MS, Cui FJ, Kim HK, Kang UG (2011) Regulation of NMDA receptor subunits after acute ethanol treatment in rat brain. Alcohol Alcohol 46(6):672–679. doi:10.1093/alcalc/agr124

    Article  CAS  PubMed  Google Scholar 

  • Rutter AR, Stephenson FA (2000) Coexpression of postsynaptic density-95 protein with NMDA receptors results in enhanced receptor expression together with a decreased sensitivity to L-glutamate. J Neurochem 75(6):2501–2510

    Article  CAS  PubMed  Google Scholar 

  • Salous AK, Ren H, Lamb KA, Hu XQ, Lipsky RH, Peoples RW (2009) Differential actions of ethanol and trichloroethanol at sites in the M3 and M4 domains of the NMDA receptor GluN2A (NR2A) subunit. Br J Pharmacol 158(5):1395–1404. doi:10.1111/j.1476-5381.2009.00397.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samudio-Ruiz SL, Allan AM, Sheema S, Caldwell KK (2010) Hippocampal N-methyl-d-aspartate receptor subunit expression profiles in a mouse model of prenatal alcohol exposure. Alcohol Clin Exp Res 34(2):342–353. doi:10.1111/j.1530-0277.2009.01096.x

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Tao YX, Su Q, Johns RA (2008) Post-synaptic density-93 mediates tyrosine-phosphorylation of the N-methyl-d-aspartate receptors. Neuroscience 153(3):700–708. doi:10.1016/j.neuroscience.2008.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumann J, Michaeli A, Yaka R (2009) Src-protein tyrosine kinases are required for cocaine-induced increase in the expression and function of the NMDA receptor in the ventral tegmental area. J Neurochem 108(3):697–706. doi:10.1111/j.1471-4159.2008.05794.x

    Article  CAS  PubMed  Google Scholar 

  • Scott DB, Blanpied TA, Swanson GT, Zhang C, Ehlers MD (2001) An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 21(9):3063–3072

    CAS  PubMed  Google Scholar 

  • Scott DB, Blanpied TA, Ehlers MD (2003) Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. Neuropharmacology 45(6):755–767

    Article  CAS  PubMed  Google Scholar 

  • Sepehrizadeh Z, Sahebgharani M, Ahmadi S, Shapourabadi MB, Bozchlou SH, Zarrindast MR (2008) Morphine-induced behavioral sensitization increased the mRNA expression of NMDA receptor subunits in the rat amygdala. Pharmacology 81(4):333–343. doi:10.1159/000122959

    Article  CAS  PubMed  Google Scholar 

  • Sigel E, Baur R, Malherbe P (1994) Protein kinase C transiently activated heteromeric N-methyl-d-aspartate receptor channels independent of the phosphorylatable C-terminal splice domain and of consensus phosphorylation sites. J Biol Chem 269(11):8204–8208

    CAS  PubMed  Google Scholar 

  • Smothers CT, Jin C, Woodward JJ (2013) Deletion of the N-terminal domain alters the ethanol inhibition of N-methyl-d-aspartate receptors in a subunit-dependent manner. Alcohol Clin Exp Res 37(11):1882–1890. doi:10.1111/acer.12168

    Article  CAS  PubMed  Google Scholar 

  • Soares C, Lee KF (2013) A prominent role for triheteromeric GluN1/GluN2A/GluN2B NMDARs at central synapses. J Neurosci 33(38):14975–14977. doi:10.1523/JNEUROSCI.3109-13.2013

    Article  CAS  PubMed  Google Scholar 

  • Sornarajah L, Vasuta OC, Zhang L, Sutton C, Li B, El-Husseini A, Raymond LA (2008) NMDA receptor desensitization regulated by direct binding to PDZ1-2 domains of PSD-95. J Neurophysiol 99(6):3052–3062. doi:10.1152/jn.90301.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Standley S, Roche KW, McCallum J, Sans N, Wenthold RJ (2000) PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28(3):887–898

    Article  CAS  PubMed  Google Scholar 

  • Standley S, Petralia RS, Gravell M, Hamilton R, Wang YX, Schubert M, Wenthold RJ (2012) Trafficking of the NMDAR2B receptor subunit distal cytoplasmic tail from endoplasmic reticulum to the synapse. PLoS ONE 7(6):e39585. doi:10.1371/journal.pone.0039585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanic J, Carta M, Eberini I, Pelucchi S, Marcello E, Genazzani AA, Racca C, Mulle C, Di Luca M, Gardoni F (2015) Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nat Commun 6:10181. doi:10.1038/ncomms10181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staples MC, Kim A, Mandyam CD (2015) Dendritic remodeling of hippocampal neurons is associated with altered NMDA receptor expression in alcohol dependent rats. Mol Cell Neurosci 65:153–162. doi:10.1016/j.mcn.2015.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Chen Y, Zhan L, Zhang L, Hu J, Gao Z (2015a) The role of non-receptor protein tyrosine kinases in the excitotoxicity induced by the overactivation of NMDA receptors. Rev Neurosci. doi:10.1515/revneuro-2015-0037

    Google Scholar 

  • Sun Y, Zhang L, Chen Y, Zhan L, Gao Z (2015b) Therapeutic targets for cerebral ischemia based on the signaling pathways of the GluN2B C terminus. Stroke 46(8):2347–2353. doi:10.1161/STROKEAHA.115.009314

    Article  PubMed  Google Scholar 

  • Tang LJ, Li C, Hu SQ, Wu YP, Zong YY, Sun CC, Zhang F, Zhang GY (2012) S-nitrosylation of c-Src via NMDAR-nNOS module promotes c-Src activation and NR2A phosphorylation in cerebral ischemia/reperfusion. Mol Cell Biochem 365(1–2):363–377. doi:10.1007/s11010-012-1280-4

    Article  CAS  PubMed  Google Scholar 

  • Tao YX, Rumbaugh G, Wang GD, Petralia RS, Zhao C, Kauer FW, Tao F, Zhuo M, Wenthold RJ, Raja SN, Huganir RL, Bredt DS, Johns RA (2003) Impaired NMDA receptor-mediated postsynaptic function and blunted NMDA receptor-dependent persistent pain in mice lacking postsynaptic density-93 protein. J Neurosci 23(17):6703–6712

    CAS  PubMed  Google Scholar 

  • Tao F, Chen Q, Sato Y, Skinner J, Tang P, Johns RA (2015) Inhalational anesthetics disrupt postsynaptic density protein-95, Drosophila disc large tumor suppressor, and zonula occludens-1 domain protein interactions critical to action of several excitatory receptor channels related to anesthesia. Anesthesiology 122(4):776–786. doi:10.1097/ALN.0000000000000609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tezuka T, Umemori H, Akiyama T, Nakanishi S, Yamamoto T (1999) PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-d-aspartate receptor subunit NR2A. Proc Natl Acad Sci USA 96(2):435–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tovar KR, McGinley MJ, Westbrook GL (2013) Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci 33(21):9150–9160. doi:10.1523/JNEUROSCI.0829-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toya S, Takatsuru Y, Kokubo M, Amano I, Shimokawa N, Koibuchi N (2014) Early-life-stress affects the homeostasis of glutamatergic synapses. Eur J Neurosci 40(11):3627–3634. doi:10.1111/ejn.12728

    Article  PubMed  Google Scholar 

  • Turnock-Jones JJ, Jennings CA, Robbins MJ, Cluderay JE, Cilia J, Reid JL, Taylor A, Jones DN, Emson PC, Southam E (2009) Increased expression of the NR2A NMDA receptor subunit in the prefrontal cortex of rats reared in isolation. Synapse 63(10):836–846. doi:10.1002/syn.20665

    Article  CAS  PubMed  Google Scholar 

  • Tuzmen MN, Yucel NC, Kalburcu T, Demiryas N (2015) Effects of curcumin and tannic acid on the aluminum- and lead-induced oxidative neurotoxicity and alterations in NMDA receptors. Toxicol Mech Methods 25(2):120–127. doi:10.3109/15376516.2014.997947

    Article  PubMed  CAS  Google Scholar 

  • Varela JA, Hirsch SJ, Chapman D, Leverich LS, Greene RW (2009) D1/D5 modulation of synaptic NMDA receptor currents. J Neurosci 29(10):3109–3119. doi:10.1523/JNEUROSCI.4746-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasefi MS, Yang K, Li J, Kruk JS, Heikkila JJ, Jackson MF, MacDonald JF, Beazely MA (2013) Acute 5-HT7 receptor activation increases NMDA-evoked currents and differentially alters NMDA receptor subunit phosphorylation and trafficking in hippocampal neurons. Mol Brain 6:24. doi:10.1186/1756-6606-6-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergnano AM, Rebola N, Savtchenko LP, Pinheiro PS, Casado M, Kieffer BL, Rusakov DA, Mulle C, Paoletti P (2014) Zinc dynamics and action at excitatory synapses. Neuron 82(5):1101–1114. doi:10.1016/j.neuron.2014.04.034

    Article  CAS  PubMed  Google Scholar 

  • Viviani B, Boraso M, Valero M, Gardoni F, Marco EM, Llorente R, Corsini E, Galli CL, Di Luca M, Marinovich M, Lopez-Gallardo M, Viveros MP (2014) Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner. Brain Behav Immun 35:135–143. doi:10.1016/j.bbi.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  • Wagey R, Hu J, Pelech SL, Raymond LA, Krieger C (2001) Modulation of NMDA-mediated excitotoxicity by protein kinase C. J Neurochem 78(4):715–726

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Chang K, Petralia RS, Wang YX, Seabold GK, Wenthold RJ (2006) A novel family of adhesion-like molecules that interacts with the NMDA receptor. J Neurosci 26(8):2174–2183. doi:10.1523/JNEUROSCI.3799-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Wang XM, Liu WJ, Zhang R, Zhou YK (2013) Effects of exposure to low-level lead on spatial learning and memory and the expression of mGluR1, NMDA receptor in different developmental stages of rats. Toxicol Ind Health 29(8):686–696. doi:10.1177/0748233712436641

    Article  PubMed  CAS  Google Scholar 

  • Wang WY, Jia LJ, Luo Y, Zhang HH, Cai F, Mao H, Xu WC, Fang JB, Peng ZY, Ma ZW, Chen YH, Zhang J, Wei Z, Yu BW, Hu SF (2014) Location- and subunit-specific NMDA receptors determine the developmental sevoflurane neurotoxicity through ERK1/2 signaling. Mol Neurobiol. doi:10.1007/s12035-014-9005-1

    Google Scholar 

  • Wang T, Guan RL, Liu MC, Shen XF, Chen JY, Zhao MG, Luo WJ (2015) Lead Exposure impairs hippocampus related learning and memory by altering synaptic plasticity and morphology during juvenile period. Mol Neurobiol. doi:10.1007/s12035-015-9312-1

    Google Scholar 

  • Wang WY, Jia LJ, Luo Y, Zhang HH, Cai F, Mao H, Xu WC, Fang JB, Peng ZY, Ma ZW, Chen YH, Zhang J, Wei Z, Yu BW, Hu SF (2016) Location- and subunit-specific NMDA receptors determine the developmental sevoflurane neurotoxicity through ERK1/2 signaling. Mol Neurobiol 53(1):216–230. doi:10.1007/s12035-014-9005-1

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Behrman B, Wu WH, Chen BS (2015) Subunit-specific regulation of N-methyl-d-aspartate (NMDA) receptor trafficking by SAP102 protein splice variants. J Biol Chem 290(8):5105–5116. doi:10.1074/jbc.M114.599969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS (2003) Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 43:335–358. doi:10.1146/annurev.pharmtox.43.100901.135803

    Article  CAS  PubMed  Google Scholar 

  • Wieck A, Andersen SL, Brenhouse HC (2013) Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: relationship to cortical NMDA receptor expression. Brain Behav Immun 28:218–226. doi:10.1016/j.bbi.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  • Williams K (1996) Separating dual effects of zinc at recombinant N-methyl-d-aspartate receptors. Neurosci Lett 215(1):9–12

    Article  CAS  PubMed  Google Scholar 

  • Win-Shwe TT, Yamamoto S, Fujitani Y, Hirano S, Fujimaki H (2008) Spatial learning and memory function-related gene expression in the hippocampus of mouse exposed to nanoparticle-rich diesel exhaust. Neurotoxicology 29(6):940–947. doi:10.1016/j.neuro.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  • Win-Shwe TT, Mitsushima D, Yamamoto S, Fujitani Y, Funabashi T, Hirano S, Fujimaki H (2009) Extracellular glutamate level and NMDA receptor subunit expression in mouse olfactory bulb following nanoparticle-rich diesel exhaust exposure. Inhal Toxicol 21(10):828–836. doi:10.1080/08958370802538068

    Article  CAS  PubMed  Google Scholar 

  • Win-Shwe TT, Yamamoto S, Fujitani Y, Hirano S, Fujimaki H (2012) Nanoparticle-rich diesel exhaust affects hippocampal-dependent spatial learning and NMDA receptor subunit expression in female mice. Nanotoxicology 6(5):543–553. doi:10.3109/17435390.2011.590904

    Article  CAS  PubMed  Google Scholar 

  • Xiong ZG, Raouf R, Lu WY, Wang LY, Orser BA, Dudek EM, Browning MD, MacDonald JF (1998) Regulation of N-methyl-d-aspartate receptor function by constitutively active protein kinase C. Mol Pharmacol 54(6):1055–1063

    CAS  PubMed  Google Scholar 

  • Xu B, Xu ZF, Deng Y (2009) Effect of manganese exposure on intracellular Ca2+ homeostasis and expression of NMDA receptor subunits in primary cultured neurons. Neurotoxicology 30(6):941–949. doi:10.1016/j.neuro.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Smothers CT, Woodward JJ (2015) Cysteine substitution of transmembrane domain amino acids alters the ethanol inhibition of GluN1/GluN2A N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 353(1):91–101. doi:10.1124/jpet.114.222034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Iwamoto T, Watanabe Y, Sobue K, Inui M (2002) PSD-95 eliminates Src-induced potentiation of NR1/NR2A-subtype NMDA receptor channels and reduces high-affinity zinc inhibition. J Neurochem 81(4):758–764

    Article  CAS  PubMed  Google Scholar 

  • Yan JZ, Xu Z, Ren SQ, Hu B, Yao W, Wang SH, Liu SY, Lu W (2011) Protein kinase C promotes N-methyl-d-aspartate (NMDA) receptor trafficking by indirectly triggering calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation. J Biol Chem 286(28):25187–25200. doi:10.1074/jbc.M110.192708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan YG, Zhang J, Xu SJ, Luo JH, Qiu S, Wang W (2014) Clustering of surface NMDA receptors is mainly mediated by the C-terminus of GluN2A in cultured rat hippocampal neurons. Neurosci Bull 30(4):655–666. doi:10.1007/s12264-014-1450-8

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Zheng C, Song Q, Yang X, Qiu S, Liu C, Chen Z, Duan S, Luo J (2007) A three amino acid tail following the TM4 region of the N-methyl-d-aspartate receptor (NR) 2 subunits is sufficient to overcome endoplasmic reticulum retention of NR1-1a subunit. J Biol Chem 282(12):9269–9278. doi:10.1074/jbc.M700050200

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Jing XP, Zhang SP, Gu RX, Tang FX, Wang XL, Xiong Y, Qiu M, Sun XY, Ke D, Wang JZ, Liu R (2013) High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling. PLoS ONE 8(1):e55384. doi:10.1371/journal.pone.0055384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu GY, Yan CH, Yu XG, Zuo Y, Zou XY, Wu SH, Xu J, Shen XM (2008) Effects of moderate lead poisoning on the hippocampus tissue of rabbits in juvenile stage. Zhonghua Yu Fang Yi Xue Za Zhi 42(3):160–164

    CAS  PubMed  Google Scholar 

  • Yu H, Li T, Cui Y, Liao Y, Wang G, Gao L, Zhao F, Jin Y (2014) Effects of lead exposure on d-serine metabolism in the hippocampus of mice at the early developmental stages. Toxicology 325:189–199. doi:10.1016/j.tox.2014.09.007

    Article  CAS  PubMed  Google Scholar 

  • Yuen EY, Ren Y, Yan Z (2008) Postsynaptic density-95 (PSD-95) and calcineurin control the sensitivity of N-methyl-d-aspartate receptors to calpain cleavage in cortical neurons. Mol Pharmacol 74(2):360–370. doi:10.1124/mol.108.046813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarantonello P, Bettini E, Paio A, Simoncelli C, Terreni S, Cardullo F (2011) Novel analogues of ketamine and phencyclidine as NMDA receptor antagonists. Bioorg Med Chem Lett 21(7):2059–2063. doi:10.1016/j.bmcl.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  • Ze X, Su M, Zhao X, Jiang H, Hong J, Yu X, Liu D, Xu B, Sheng L, Zhou Q, Zhou J, Cui J, Li K, Wang L, Ze Y, Hong F (2014a) TiO nanoparticle-induced neurotoxicity may be involved in dysfunction of glutamate metabolism and its receptor expression in mice. Environ Toxicol. doi:10.1002/tox.22077

    Google Scholar 

  • Ze Y, Sheng L, Zhao X, Ze X, Wang X, Zhou Q, Liu J, Yuan Y, Gui S, Sang X, Sun Q, Hong J, Yu X, Wang L, Li B, Hong F (2014b) Neurotoxic characteristics of spatial recognition damage of the hippocampus in mice following subchronic peroral exposure to TiO2 nanoparticles. J Hazard Mater 264:219–229. doi:10.1016/j.jhazmat.2013.10.072

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Liu AP, Ruan DY, Liu J (2002) Effect of developmental lead exposure on the expression of specific NMDA receptor subunit mRNAs in the hippocampus of neonatal rats by digoxigenin-labeled in situ hybridization histochemistry. Neurotoxicol Teratol 24(2):149–160

    Article  PubMed  Google Scholar 

  • Zhang F, Li C, Wang R, Han D, Zhang QG, Zhou C, Yu HM, Zhang GY (2007) Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion. Neuroscience 150(4):938–949. doi:10.1016/j.neuroscience.2007.09.070

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu TX, Hallett PJ, Watanabe M, Grant SG, Isacson O, Yao WD (2009) PSD-95 uncouples dopamine-glutamate interaction in the D1/PSD-95/NMDA receptor complex. J Neurosci 29(9):2948–2960. doi:10.1523/JNEUROSCI.4424-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Saur T, Duke AN, Grant SG, Platt DM, Rowlett JK, Isacson O, Yao WD (2014) Motor impairments, striatal degeneration, and altered dopamine-glutamate interplay in mice lacking PSD-95. J Neurogenet 28(1–2):98–111. doi:10.3109/01677063.2014.892486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang XM, Yan XY, Zhang B, Yang Q, Ye M, Cao W, Qiang WB, Zhu LJ, Du YL, Xu XX, Wang JS, Xu F, Lu W, Qiu S, Yang W, Luo JH (2015) Activity-induced synaptic delivery of the GluN2A-containing NMDA receptor is dependent on endoplasmic reticulum chaperone Bip and involved in fear memory. Cell Res 25(7):818–836. doi:10.1038/cr.2015.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Shen F, Xu D, Zhao X (2016) A lasting effect of postnatal sevoflurane anesthesia on the composition of NMDA receptor subunits in rat prefrontal cortex. Int J Dev Neurosci. doi:10.1016/j.ijdevneu.2016.01.008

    Google Scholar 

  • Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, He S (2009) Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuropsychopharmacol Biol Psychiatry 33(7):1173–1177. doi:10.1016/j.pnpbp.2009.06.016

    Article  CAS  PubMed  Google Scholar 

  • Zhao YL, Chen SR, Chen H, Pan HL (2012) Chronic opioid potentiates presynaptic but impairs postsynaptic N-methyl-d-aspartic acid receptor activity in spinal cords: implications for opioid hyperalgesia and tolerance. J Biol Chem 287(30):25073–25085. doi:10.1074/jbc.M112.378737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Li Y, Wei W, Savage S, Zhou L, Ma D (2014) Ketamine administered to pregnant rats in the second trimester causes long-lasting behavioral disorders in offspring. Neurobiol Dis 68:145–155. doi:10.1016/j.nbd.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Du CP, Peng Y, Xu Z, Sun CC, Liu Y, Hou XY (2015) The upregulation of NR2A-containing N-methyl-d-aspartate receptor function by tyrosine phosphorylation of postsynaptic density 95 via facilitating Src/proline-rich tyrosine kinase 2 activation. Mol Neurobiol 51(2):500–511. doi:10.1007/s12035-014-8796-4

    Article  CAS  PubMed  Google Scholar 

  • Zheng F, Gingrich MB, Traynelis SF, Conn PJ (1998) Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat Neurosci 1(3):185–191. doi:10.1038/634

    Article  CAS  PubMed  Google Scholar 

  • Zheng F, Erreger K, Low CM, Banke T, Lee CJ, Conn PJ, Traynelis SF (2001) Allosteric interaction between the amino terminal domain and the ligand binding domain of NR2A. Nat Neurosci 4(9):894–901. doi:10.1038/nn0901-894

    Article  CAS  PubMed  Google Scholar 

  • Zheng CY, Yang XJ, Fu ZY, Luo JH (2006) Phorbol-induced surface expression of NR2A subunit homologues in HEK293 cells. Acta Pharmacol Sin 27(12):1580–1585. doi:10.1111/j.1745-7254.2006.00434.x

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Liu Z, Wei C, Han J, Liu Y, Zhang X, Ren W (2014) Activation of the D1 receptors inhibits the long-term potentiation in vivo induced by acute morphine administration through a D1-GluN2A interaction in the nucleus accumbens. NeuroReport 25(15):1191–1197. doi:10.1097/WNR.0000000000000245

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Ding Q, Chen Z, Yun H, Wang H (2013) Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-d-aspartate receptor function and neuronal excitotoxicity. J Biol Chem 288(33):24151–24159. doi:10.1074/jbc.M113.482000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Chen Z, Yun W, Ren J, Li C, Wang H (2015) Extrasynaptic NMDA Receptor in Excitotoxicity: Function Revisited. Neuroscientist 21(4):337–344. doi:10.1177/1073858414548724

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Jang CG, Ma T, Oh S, Rockhold RW, Ho IK (1999) Region specific expression of NMDA receptor NR1 subunit mRNA in hypothalamus and pons following chronic morphine treatment. Eur J Pharmacol 365(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZW, Yang RL, Dong GJ, Zhao ZY (2005) Study on the neurotoxic effects of low-level lead exposure in rats. J Zhejiang Univ Sci B 6(7):686–692. doi:10.1631/jzus.2005.B0686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu LQ, Wang SH, Liu D, Yin YY, Tian Q, Wang XC, Wang Q, Chen JG, Wang JZ (2007) Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J Neurosci 27(45):12211–12220. doi:10.1523/JNEUROSCI.3321-07.2007

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Shao CY, Yang W, Zhang XM, Wu ZY, Zhou L, Wang XX, Li YH, Xia J, Luo JH, Shen Y (2012) Chronic zinc exposure decreases the surface expression of NR2A-containing NMDA receptors in cultured hippocampal neurons. PLoS ONE 7(9):e46012. doi:10.1371/journal.pone.0046012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Liu X, Wei F, Wang F, Merzenich MM, Schreiner CE, Sun X, Zhou X (2014) Perceptual training restores impaired cortical temporal processing due to lead exposure. Cereb Cortex. doi:10.1093/cercor/bhu258

    PubMed Central  Google Scholar 

  • Zhu X, Liu X, Wei F, Wang F, Merzenich MM, Schreiner CE, Sun X, Zhou X (2016) Perceptual training restores impaired cortical temporal processing due to lead exposure. Cereb Cortex 26(1):334–345. doi:10.1093/cercor/bhu258

    Article  PubMed  Google Scholar 

  • Zink M, Ferbert T, Frank ST, Seufert P, Gebicke-Haerter PJ, Spanagel R (2011) Perinatal exposure to alcohol disturbs spatial learning and glutamate transmission-related gene expression in the adult hippocampus. Eur J Neurosci 34(3):457–468. doi:10.1111/j.1460-9568.2011.07776.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Natural Science Foundation of China (NSFC 81200886, NSFC 81402886), the Natural Science Foundation of Hebei Province (H2014208004), the Science and Technology Project of Hebei Province (13397703D), the Key Basic Research Program of the Application Foundation Research Project of Hebei Province (14967719D, 15962704D), the State Key Laboratory Breeding Base—Hebei Key Laboratory of Molecular Chemistry for Drug and Hebei Research Center of Pharmaceutical and Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zibin Gao.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhan, L., Cheng, X. et al. The Regulation of GluN2A by Endogenous and Exogenous Regulators in the Central Nervous System. Cell Mol Neurobiol 37, 389–403 (2017). https://doi.org/10.1007/s10571-016-0388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0388-6

Keywords

Navigation