Skip to main content
Log in

NMDA receptors as targets of heavy metal interaction and toxicity

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

TheN-methyl-D-aspartate (NMDA) receptor (NR) is a ligand-gated channel that carries the slow component of the glutamate-activated postsynaptic current. Divalent metal ions can affect the NR channel activity in a voltage-dependent (Mg2+-like) or voltage-independent (Zn2+-like) manner. We have studied the effect of two toxic metals, lead (Pb2+) and nickel (Ni2+) on recombinant NR1a-NR2A and NR1a-NR2B channels expressed in RNA-injectedXenopus laevis oocytes or in transiently transfected mammalian HEK293 cells. Pb2+ caused a dose-dependent, but voltage-independent reversible inhibition of NMDA-activated channel activity similar for NR2A- and NR2B-containing receptors; it did not modify the single channel conductance, indicating that its binding site is located out of the ionic pathway of permeation. On the contrary, Ni2+ had multiple and complex effects on NR channels. It determined a voltage-dependent, Mg2+-like block by which the single channel amplitude and the mean open time were reduced in both NR2A- and NR2B-containing channels. While high (>100 µM) concentrations caused a dose-dependent reduction of the activity in both channel types, 30 µM determined a voltage-independent decrease in the frequency of NR1a-NR2A channel openings, but an increase in the frequency of NR1a-NR2B channel openings, confirming previous observations of a subunit-dependent effect of this metal. These results were interpreted under the hypothesis that Pb2+mediates a Zn2+-like voltage-independent allosteric modulation that, different from Zn2+, is subunit-independent. In contrast, Ni2+ has different modes of action, which are dependent on the NR2 subunit type present in the receptor and are likely to be related to different interaction sites. The NR2B-dependent facilitation bears close similarities with the polyamine-mediated potentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkondon M, AC Costa, V Radhakrishnan, RS Aronstam and EX Albuquerque (1990) Selective blockade of NMDA-activated channel currents may be implicated in learning deficits caused by lead.FEBSLett. 261, 124–130.

    Article  CAS  Google Scholar 

  • Ascher P and L Nowak (1988) The role of divalent cations in theN-methyl-D-aspartate responses of mouse central neurones in culture.J. Physiol. 399, 247–266.

    PubMed  CAS  Google Scholar 

  • Ault B, RH Evans, AA Francis, DJ Oakes and JC Watkins (1980) Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations.J. Physiol. 307, 413–428.

    PubMed  CAS  Google Scholar 

  • Baranano DE, CD Ferris and SH Snyder (2001) Atypical neural messengers.Trends Neurosci. 24, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Barria A and R Malinow (2002) Subunit-specific NMDA receptor trafficking to synapses.Neuron 35, 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Bennett JA and R Dingledine (1995) Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop.Neuron 14, 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Büsselberg D, D Michael and B Platt (1994) Pb2+ reduces voltage- andN-methyl-D-aspartate (NMDA)-activated calcium channel currents.Cell. Mol. Neurobiol.14, 711–722.

    Article  PubMed  Google Scholar 

  • Choi DW (1992) Excitotoxic cell death.J. Neurobiol.23, 1261–1276.

    Article  PubMed  CAS  Google Scholar 

  • Choi YB and SA Lipton (1999) Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor.Neuron 23, 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, HV Chen and SA Lipton (2001) Three pairs of cysteine residues mediate both redox and Zn2+ modulation of the NMDA receptor.J. Neurosci.21, 392–400.

    PubMed  CAS  Google Scholar 

  • Clarkson T (1993) Molecular and ionic mimicry of toxic metals.Annu. Rev. Pharmacol. Toxicol.32, 545–571

    Article  Google Scholar 

  • Cull-Candy S, S Brickley and M Farrant (2001) NMDA receptor subunits: diversity, development and disease.Curr. Opin. Neurobiol.11, 327–335.

    Article  PubMed  CAS  Google Scholar 

  • Durand GM, MV Bennett and RS Zukin (1993) Splice variants of theN-methyl-D-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C.Proc. Natl. Acad. Sci. USA 90, 6731–6735.

    Article  PubMed  CAS  Google Scholar 

  • Fayyazuddin A, A Villarroel, A Le Goff, J Lerma and J Neyton (2000) Four residues of the extracellularN-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors.Neuron 25, 683–694.

    Article  PubMed  CAS  Google Scholar 

  • Fisher JL and RL Macdonald (1998) The role of an alpha subtype M2-M3 His in regulating inhibition of GABAA receptor current by zinc and other divalent cations.J. Neurosci. 18, 2944–2953.

    PubMed  CAS  Google Scholar 

  • Furukawa H and E Gouaux (2003) Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core.Embo J. 22, 2873–2885.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher MJ, H Huang, ER Grant and DR Lynch (1997) The NR2B-specific interactions of polyamines and protons with theN-methyl-D-aspartate receptor.J. Biol. Chem. 272, 24971–24979.

    Article  PubMed  CAS  Google Scholar 

  • Gavazzo P, C Picco and A Menini (1997) Mechanisms of modulation by internal protons of cyclic nucleotide-gated channels cloned from sensory receptor cells.Proc. R Soc. Lond. B Biol. Sci. 264, 1157–1165.

    Article  CAS  Google Scholar 

  • Gavazzo P, A Gazzoli, M Mazzolini and C Marchetti (2001) Lead inhibition of NMDA channels in native and recombinant receptors.Neuroreport 12, 3121–3125.

    Article  PubMed  CAS  Google Scholar 

  • Guilarte TR and JL McGlothan (1998) Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure.Brain Res. 790, 98–107.

    Article  PubMed  CAS  Google Scholar 

  • Guilarte TR and RC Miceli (1992) Age-dependent effects of lead on 3H]MK-801 binding to the NMDA receptor-gated ionophore:in vitro andin vivo studies.Neurosci. Lett. 148, 27–30.

    Article  PubMed  CAS  Google Scholar 

  • Guilarte TR, RC Miceli and DA Jett (1995) Biochemical evidence of an interaction of lead at the zinc allosteric sites of the NMDA receptor complex: effects of neuronal development.Neurotoxicology 16, 63–71.

    PubMed  CAS  Google Scholar 

  • Herin GA and E Aizenman (2004) Amino terminal domain regulation of NMDA receptor function.Eur. J. Pharmacol.500, 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1992)Ionic Channels of Excitables Membranes (Sinauer Associates Inc.: Sunderland, MA), pp 391–393.

    Google Scholar 

  • Hirai H, J Kirsch, B Laube, H Betz and J Kuhse (1996) The glycine binding site of theN-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region.Proc. Natl. Acad. Sci. USA 93, 6031–6036.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann H, T Gremme, H Hatt and K Gottmann (2000) Synaptic activity-dependent developmental regulation of NMDA receptor subunit expression in cultured neocortical neurons.J. Neurochem.75, 1590–1599.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M and S Heinemann (1994) Cloned glutamate receptors.Annu. Rev.Neurosci. 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, J Boulter, C Maron, L Beasley, J Sullivan, G Pecht and S Heinemann (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor.Neuron 10, 943–954.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, C Maron and S Heinemann (1994)N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1.Neuron 13, 1331–1343.

    Article  PubMed  CAS  Google Scholar 

  • Huggins DJ and GH Grant (2005) The function of the amino terminal domain in NMDA receptor modulation.J. Mol. Graph. Model. 23, 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara K, M Alkondon, JG Montes and EX Albuquerque (1995) Ontogenically related properties ofN-methyl-D-aspartate receptors in rat hippocampal neurons and the age-specific sensitivity of developing neurons to lead.J. Pharmacol. Exp. Ther. 273, 1459–1470.

    PubMed  CAS  Google Scholar 

  • Johnson JP Jr and WN Zagotta (2001) Rotational movement during cyclic nucleotide-gated channel opening.Nature 412, 917–921.

    Article  PubMed  CAS  Google Scholar 

  • Jones KS, HM Van Dongen and AM Van Dongen (2002) The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening.J. Neurosci. 22, 2044–2053.

    PubMed  CAS  Google Scholar 

  • Kashiwagi K, AJ Pahk, T Masuko, K Igarashi and K Williams (1997) Block and modulation ofN-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits.Mol. Pharmacol.52, 701–713.

    PubMed  CAS  Google Scholar 

  • Kemp JA and RM McKernan (2002) NMDA receptor pathways as drug targets.Nat. Neurosci. 5, 1039–1042.

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue K, TY Hiyama, K Nakayama, M Kasai and T Taguchi (2004) Re-expression of NR2B-containing NMDA receptorsin vitro by suppression of neuronal activity.Int. J. Dev. Neurosci. 22, 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Kohda K, Y Wang and M Yuzaki (2000) Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties.Nat. Neurosci. 3, 315–322.

    Article  PubMed  CAS  Google Scholar 

  • Lacinova L, N Klugbauer and F Hofmann (2000) Low voltage activated calcium channels: from genes to function.Gen. Physiol. Biophys. 19, 121–136.

    PubMed  CAS  Google Scholar 

  • Lau WK, CW Yeung, PW Lui, LH Cheung, NT Poon and KK Yung (2002) Different trends in modulation of NMDAR1 and NMDAR2B gene expression in cultured cortical and hippocampal neurons after lead exposure.Brain Res. 932, 10–24.

    Article  PubMed  CAS  Google Scholar 

  • Low CM, F Zheng, P Lyuboslavsky and SF Traynelis (2000) Molecular determinants of coordinated proton and zinc inhibition ofN-methyl-D-aspartate NR1/NR2A receptors.Proc. Natl. Acad. Sci. USA 97, 11062–11067.

    Article  PubMed  CAS  Google Scholar 

  • Low CM, P Lyuboslavsky, A French, P Le, K Wyatte, WH Thiel, EM Marchan, K Igarashi, K Kashiwagi, K Gernert, K Williams, SF Traynelis and F Zheng (2003) Molecular determinants of proton-sensitiveN-methyl-D-aspartate receptor gating.Mol. Pharmacol.63, 1212–1222.

    Article  PubMed  CAS  Google Scholar 

  • Lu W-Y, Z-G Xiong, BA Orser and JF MacDonald (1998) Multiple sites of action of neomycin. Mg2+ and spermine on the NMDA receptors of rat hippocampal CA1 pyramidal neurones.J. Physiol. (Lond.) 512, 29–46.

    Article  CAS  Google Scholar 

  • Marchetti C (2003) Molecular targets of lead in brain neurotoxicity.Neurotoxicity Res. 5, 221–236.

    Article  Google Scholar 

  • Marchetti C and P Gavazzo (2003) Subunit-dependent effects of nickel on NMDA receptor channels.Brain Res. Mol. Brain Res. 117, 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Marchioro M, KL Swanson, Y Aracava and EX Albuquerque (1996) Glycine and calcium-dependent effects of lead onN-methyl-D-aspartate receptor function in rat hippocampal neurons.J. Pharmacol. Exp. Ther. 279, 143–153.

    PubMed  CAS  Google Scholar 

  • Maroney MJ (1999) Structure/function relationships in nickel metallobiochemistry.Curr. Opin. Chem. Biol. 3, 188–199.

    Article  PubMed  CAS  Google Scholar 

  • Masuko T, K Kashiwagi, T Kuno, ND Nguyen, AJ Pahk, J Fukuchi, K Igarashi and K Williams (1999) A regulatory domain (R1–R2) in the amino terminus of theN-methyl-D-aspartate receptor: effects of spermine, protons, and ifenprodil, and structural similarity to bacterial leucine/isoleucine/valine binding protein.Mol. Pharmacol.55, 957–969.

    PubMed  CAS  Google Scholar 

  • Mayer ML and N Armstrong (2004) Structure and function of glutamate receptor ion channels.Annu. Rev. Physiol. 66, 161–181.

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML and GL Westbrook (1987) Permeation and block ofN-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones.J. Physiol. 394, 501–527.

    PubMed  CAS  Google Scholar 

  • Mazzolini M, S Traverso and C Marchetti (2001) Multiple pathways of Pb2+ permeation in rat cerebellar granule neurones.J. Neurochem.79, 407–416.

    Article  PubMed  CAS  Google Scholar 

  • Neher E and JH Steinbach (1978) Local anaesthetics transiently block currents through single acetylcholine-receptor channels.J. Physiol. 277, 153–176.

    PubMed  CAS  Google Scholar 

  • Nihei MK, NL Desmond, JL McGlothan, AC Kuhlmann and TR Guilarte (2000)N-methyl-D-aspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning.Neuroscience 99, 233–242.

    Article  PubMed  CAS  Google Scholar 

  • O’Hara PJ, PO Sheppard, H Thogersen, D Venezia, BA Haldeman, V McGrane, KM Houamed, C Thomsen, TL Gilbert and ER Mulvihill (1993) The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins.Neuron 11, 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Omelchenko IA, CS Nelson, JL Marino and CN Allen (1996) The sensitivity ofN-methyl-D-aspartate receptors to lead inhibition is dependent on the receptor subunit composition.J. Pharmacol. Exp. Ther. 278, 15–20.

    PubMed  CAS  Google Scholar 

  • Omelchenko IA, CS Nelson and CN Allen (1997) Lead inhibition ofN-methyl-D-aspartate receptors containing NR2A, NR2C and NR2D subunits.J. Pharmacol. Exp. Ther. 282, 1458–1464.

    PubMed  CAS  Google Scholar 

  • Paoletti P, J Neyton and P Ascher (1995) Glycine-independent and subunit-specific potentiation of NMDA responses by extracellular Mg2+.Neuron 15, 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  • Paoletti P, P Ascher and J Neyton (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors.J. Neurosci. 17, 5711–5725.

    PubMed  CAS  Google Scholar 

  • Paoletti P, F Perin-Dureau, A Fayyazuddin, A Le Goff, I Callebaut and J Neyton (2000) Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor subunit.Neuron 28, 911–925.

    Article  PubMed  CAS  Google Scholar 

  • Perin-Dureau F, J Rachline, J Neyton and P Paoletti (2002) Mapping the binding site of the neuroprotectant ifenprodil on NMDA receptors.J. Neurosci. 22, 5955–5965.

    PubMed  CAS  Google Scholar 

  • Qian A and JW Johnson (2002) Channel gating of NMDA receptors.Physiol. Behav. 77, 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Rachline J, F Perin-Dureau, A Le Goff, J Neyton and P Paoletti (2005) The micromolar zinc-binding domain on the NMDA receptor subunit NR2B.J. Neurosci. 25, 308–317.

    Article  PubMed  CAS  Google Scholar 

  • Rumbaugh G and S Vicini (1999) Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons.J. Neurosci. 19, 10603–10610.

    PubMed  CAS  Google Scholar 

  • Snell LD, SV Bhave, B Tabakoff and PL Hoffman (2001) Chronic ethanol exposure delays the ‘developmental switch’ of the NMDA receptor 2A and 2B subunits in cultured cerebellar granule neurons.J. Neurochem.78, 396–405.

    Article  PubMed  CAS  Google Scholar 

  • Tottene A, S Volsen and D Pietrobon (2000) alpha(1E) subunits form the pore of three cerebellar R-type calcium channels with different pharmacological and permeation properties.J. Neurosci. 20, 171–178.

    PubMed  CAS  Google Scholar 

  • Traynelis SF, MF Burgess, F Zheng, P Lyuboslavsky and JL Powers (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit.J. Neurosci. 18, 6163–6175.

    PubMed  CAS  Google Scholar 

  • Ujihara H and EX Albuquerque (1992) Developmental change of the inhibition by lead of NMDA-activated currents in cultured hippocampal neurons.J. Pharmacol. Exp. Ther. 263, 868–875.

    PubMed  CAS  Google Scholar 

  • Wenzel A, JM Fritschy, H Mohler and D Benke (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins.J. Neurochem.68, 469–478.

    Article  PubMed  CAS  Google Scholar 

  • Westbrook GL and ML Mayer (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons.Nature 328, 640–643.

    Article  PubMed  CAS  Google Scholar 

  • Williams K (1997) Interactions of polyamines with ion channels.Biochem. J. 325, 289–297.

    PubMed  CAS  Google Scholar 

  • Williams K, AJ Pahk, K Kashiwagi, T Masuko, ND Nguyen and K Igarashi (1998) The selectivity filter of theN-methyl-D-aspartate receptor: a tryptophan residue controls block and permeation of Mg2+.Mol. Pharmacol.53, 933–941.

    PubMed  CAS  Google Scholar 

  • Wollmuth LP, T Kuner and B Sakmann (1998) Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+.J. Physiol. 506, 13–32.

    Article  PubMed  CAS  Google Scholar 

  • Woodhull AM (1973) Ionic blockage of sodium channels in nerve.J. Gen. Physiol. 61, 687–708.

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, H Ujihara, H Sada and T Ban (1995) Pb2+ reduces the current from NMDA receptors expressed inXenopus oocytes.FEBS Lett. 377, 390–392.

    Article  PubMed  CAS  Google Scholar 

  • Zamponi GW, E Bourinet and TP Snutch (1996) Nickel block of a family of neuronal calcium channels: subtype- and subunit-dependent action at multiple sites.J. Membr.Biol. 151, 77–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Marchetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchetti, C., Gavazzo, P. NMDA receptors as targets of heavy metal interaction and toxicity. neurotox res 8, 245–258 (2005). https://doi.org/10.1007/BF03033978

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033978

Navigation