Skip to main content
Log in

Oxidative Stress Parameters in Urine from Patients with Disorders of Propionate Metabolism: a Beneficial Effect of l-Carnitine Supplementation

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Propionic (PA) and methylmalonic (MMA) acidurias are inherited disorders caused by deficiency of propionyl-CoA carboxylase and methylmalonyl-CoA mutase, respectively. Affected patients present acute metabolic crises in the neonatal period and long-term neurological deficits. Treatments of these diseases include a protein restricted diet and l-carnitine supplementation. l-Carnitine is widely used in the therapy of these diseases to prevent secondary l-carnitine deficiency and promote detoxification, and several recent in vitro and in vivo studies have reported antioxidant and antiperoxidative effects of this compound. In this study, we evaluated the oxidative stress parameters, isoprostane and di-tyrosine levels, and the antioxidant capacity, in urine from patients with PA and MMA at the diagnosis, and during treatment with l-carnitine and protein-restricted diet. We verified a significant increase of isoprostanes and di-tyrosine, as well as a significant reduction of the antioxidant capacity in urine from these patients at diagnosis, as compared to controls. Furthermore, treated patients presented a marked reduction of isoprostanes and di-tyrosine levels in relation to untreated patients. In addition, patients with higher levels of protein and lipid oxidative damage, determined by di-tyrosine and isoprostanes levels, also presented lower urinary concentrations of total and free l-carnitine. In conclusion, the present results indicate that treatment with low protein diet and l-carnitine significantly reduces urinary biomarkers of protein and lipid oxidative damage in patients with disorders of propionate metabolism and that l-carnitine supplementation may be specially involved in this protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Brusque AM, Borba Rosa R, Schuck PF, Dalcin KB, Ribeiro CA, Silva CG, Wannmacher CM, Dutra-Filho CS, Wyse AT, Briones P, Wajner M (2002) Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int 40:593–601

    Article  PubMed  CAS  Google Scholar 

  • Chalmers RA, Stacey TE, Tracey BM, de Sousa C, Roe CR, Millington DS, Hoppel CL (1984) l-Carnitine insufficiency in disorders of organic acid metabolism: response to l-carnitine by patients with methylmalonic aciduria and 3-hydroxy-3-methylglutaric aciduria. J Inherit Metab Dis Suppl 2:109–110

    Google Scholar 

  • De Sousa C, English NR, Stacey TE, Chalmers RA (1990) Measurement of l-carnitine and acylcarnitines in body fluids and tissues in children and in adults. Clin Chim Acta 187:317–328

    Article  PubMed  Google Scholar 

  • Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C (2006) Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet 142C:104–112

    Article  PubMed  CAS  Google Scholar 

  • Derin N, Izgut-Uysal VN, Agac A, Aliciguzel Y, Demir N (2004) l-Carnitine protects gastric mucosa by decreasing ischemia-reperfusion induced lipid peroxidation. J Physiol Pharmacol 55:595–606

    PubMed  CAS  Google Scholar 

  • Di Donato S, Rimoldi M, Garavaglia B, Uziel G (1984) Propionylcarnitine excretion in propionic and methylmalonic acidurias: a cause of carnitine deficiency. Clin Chim Acta 139:13–21

    Article  PubMed  CAS  Google Scholar 

  • Dutra JC, Dutra-Filho CS, Cardozo SE, Wannmacher CM, Sarkis JJ, Wajner M (1993) Inhibition of succinate dehydrogenase and beta-hydroxybutyrate dehydrogenase activities by methylmalonate in brain and liver of developing rats. J Inherit Metab Dis 16:147–153

    Article  PubMed  CAS  Google Scholar 

  • Fenton WA, Gravel RA, Rosenblatt DS (2001) Disorders of propionate and methylmalonate metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2165–2194

    Google Scholar 

  • Fighera MR, Queiroz CM, Stracke MP, Brauer MC, González-Rodríguez LL, Frussa-Filho R, Wajner M, de Mello CF (1999) Ascorbic acid and alpha-tocopherol attenuate methylmalonic acid-induced convulsions. Neuroreport 10:2039–2043

    Article  PubMed  CAS  Google Scholar 

  • Fontella FU, Pulrolnik V, Gassen E, Wannmacher CM, Klein AB, Wajner M, Dutra-Filho CS (2000) Propionic and l-methylmalonic acids induce oxidative stress in brain of young rats. Neuroreport 11:541–544

    Article  PubMed  CAS  Google Scholar 

  • Furian AF, Fighera MR, Oliveira MS, Ferreira AP, Fiorenza NG, de Carvalho Myskiw J, Petry JC, Coelho RC, Mello CF, Royes LF (2007) Methylene blue prevents methylmalonate-induced seizures and oxidative damage in rat striatum. Neurochem Int 50:164–171

    Article  PubMed  CAS  Google Scholar 

  • Gülçin I (2006) Antioxidant and antiradical activities of l-carnitine. Life Sci 78:803–811

    Article  PubMed  Google Scholar 

  • Kirschbaum B (2002) Correlative studies of urine fluorescence and free radical indicators. Clin Nephrol 58:344–349

    PubMed  CAS  Google Scholar 

  • Malfatti CR, Royes LF, Francescato L, Sanabria ER, Rubin MA, Cavalheiro EA, Mello CF (2003) Intrastriatal methylmalonic acid administration induces convulsions and TBARS production, and alters Na+, K+-ATPase activity in the rat striatum and cerebral cortex. Epilepsia 44:761–767

    Article  PubMed  CAS  Google Scholar 

  • Mc Guire PJ, Parikh A, Diaz GA (2009) Profiling of oxidative stress in patients with inborn errors of metabolism. Mol Genet Metab 98:173–180

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin BA, Nelson D, Silver IA, Erecinska M, Chesselet MF (1998) Methylmalonate toxicity in primary neuronal cultures. Neuroscience 86:279–290

    Article  PubMed  CAS  Google Scholar 

  • Moyano D, Vilaseca MA, Pineda M, Campistol J, Vernet A, Póo P, Artuch R, Sierra C (1997) Tocopherol in inborn errors of intermediary metabolism. Clin Chim Acta 263:147–155

    Article  PubMed  CAS  Google Scholar 

  • Nourooz-Zadeh J (2008) Key issues in F2-isoprostane analysis. Biochem Soc Trans 36:1060–1065

    Article  PubMed  CAS  Google Scholar 

  • Pérez B, Angaroni C, Sánchez-Alcudia R, Merinero B, Pérez-Cerdá C, Specola N, Rodríguez-Pombo P, Wajner M, de Kremer RD, Cornejo V, Desviat LR, Ugarte M (2010) The molecular landscape of propionic acidemia and methylmalonic aciduria in Latin America. J Inherit Metab Dis 33:S307–S314

    Article  PubMed  Google Scholar 

  • Pettenuzzo LF, Schuck PF, Fontella F, Wannmacher CM, Wyse AT, Dutra-Filho CS, Netto CA, Wajner M (2002) Ascorbic acid prevents cognitive deficits caused by chronic administration of propionic acid to rats in the water maze. Pharmacol Biochem Behav 73:623–629

    Article  PubMed  CAS  Google Scholar 

  • Pettenuzzo LF, Schuck PF, Wyse AT, Wannmacher CM, Dutra-Filho CS, Netto CA, Wajner M (2003) Ascorbic acid prevents water maze behavioral deficits caused by early postnatal methylmalonic acid administration in the rat. Brain Res 976:234–242

    Article  PubMed  CAS  Google Scholar 

  • Rani PJ, Panneerselvam C (2002) Effect of l-carnitine on brain lipid peroxidation and antioxidant enzymes in old rats. J Gerontol A Biol Sci Med Sci 57:B134–B137

    Article  PubMed  Google Scholar 

  • Reznick AZ, Kagan VE, Ramsey R, Tsuchiya M, Khwaja S, Serbinova EA, Packer L (1992) Antiradical effects in l-propionyl carnitine protection of the heart against ischemia-reperfusion injury: the possible role of iron chelation. Arch Biochem Biophys 296:394–401

    Article  PubMed  CAS  Google Scholar 

  • Ribas GS, Manfredini V, de Mari JF, Wayhs CY, Vanzin CS, Biancini GB, Sitta A, Deon M, Wajner M, Vargas CR (2010a) Reduction of lipid and protein damage in patients with disorders of propionate metabolism under treatment: a possible protective role of l-carnitine supplementation. Int J Dev Neurosci 28:127–132

    Article  PubMed  CAS  Google Scholar 

  • Ribas GS, Manfredini V, de Marco MG, Vieira RB, Wayhs CY, Vanzin CS, Biancini GB, Wajner M, Vargas CR (2010b) Prevention by l-carnitine of DNA damage induced by propionic and l-methylmalonic acids in human peripheral leukocytes in vitro. Mutat Res 702:123–128

    PubMed  CAS  Google Scholar 

  • Ribas GS, Sitta A, Wajner M, Vargas CR (2011) Oxidative stress in phenylketonuria: what is the Evidence? Cell Mol Neurobiol 31:653–662

    Article  PubMed  CAS  Google Scholar 

  • Richard E, Alvarez-Barrientos A, Pérez B, Desviat LR, Ugarte M (2007) Methylmalonic acidaemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway. J Pathol 213:453–461

    Article  PubMed  CAS  Google Scholar 

  • Rigo FK, Pasquetti L, Malfatti CR, Fighera MR, Coelho RC, Petri CZ, Mello CF (2006) Propionic acid induces convulsions and protein carbonylation in rats. Neurosci Lett 408:151–154

    Article  PubMed  CAS  Google Scholar 

  • Schuck PF, Rosa RB, Pettenuzzo LF, Sitta A, Wannmacher CM, Wyse AT, Wajner M (2004) Inhibition of mitochondrial creatine kinase activity from rat cerebral cortex by methylmalonic acid. Neurochem Int 45:661–667

    Article  PubMed  CAS  Google Scholar 

  • Schwab MA, Sauer SW, Okun JG, Nijtmans LG, Rodenburg RJ, van den Heuvel LP, Dröse S, Brandt U, Hoffmann GF, Ter Laak H, Kölker S, Smeitink JA (2006) Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J 398:107–112

    Article  PubMed  CAS  Google Scholar 

  • Sitta A, Barschak AG, Deon M, de Mari JF, Barden AT, Vanzin CS, Biancini GB, Schwartz IV, Wajner M, Vargas CR (2009) l-Carnitine blood levels and oxidative stress in treated phenylketonuric patients. Cell Mol Neurobiol 29:211–218

    Article  PubMed  CAS  Google Scholar 

  • Sitta A, Vanzin CS, Biancini GB, Manfredini V, de Oliveira AB, Wayhs CA, Ribas GO, Giugliani L, Schwartz IV, Bohrer D, Garcia SC, Wajner M, Vargas CR (2011) Evidence that l-carnitine and selenium supplementation reduces oxidative stress in phenylketonuric patients. Cell Mol Neurobiol 31:429–436

    Article  PubMed  CAS  Google Scholar 

  • Solarska K, Lewińska A, Karowicz-Bilińska A, Bartosz G (2010) The antioxidant properties of carnitine in vitro. Cell Mol Biol Lett 15:90–97

    Article  PubMed  CAS  Google Scholar 

  • Sweetman L (1991) Organic Acid Analysis. In: Hommes FA (ed) Techniques in diagnostic human biochemical genetics: a laboratory manual. Wiley-Liss, New York, pp 143–176

    Google Scholar 

  • Touati G, Valayannopoulos V, Mention K, de Lonlay P, Jouvet P, Depondt E, Assoun M, Souberbielle JC, Rabier D, Ogier de Baulny H, Saudubray JM (2006) Methylmalonic and propionic acidurias: management without or with a few supplements of specific amino acid mixture. J Inherit Metab Dis 29:288–298

    Article  PubMed  CAS  Google Scholar 

  • Vanella A, Russo A, Acquaviva R, Campisi A, Di Giacomo C, Sorrenti V, Barcellona ML (2000) l-Propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector. Cell Biol Toxicol 16:99–104

    Article  PubMed  CAS  Google Scholar 

  • Vivian L, Pessutto FD, de Almeida LM, Loureiro S de O, Pelaez Pde L, Funchal C, Wajner M, Pessoa-Pureur R (2002) Effect of propionic and methylmalonic acids on the high molecular weight neurofilament subunit (NF-H) in rat cerebral cortex. Neurochem Res 27:1691–7

  • Wajner M, Coelho JC (1997) Neurological dysfunction in methylmalonic acidaemia is probably related to the inhibitory effect of methylmalonate on brain energy production. J Inherit Metab Dis 20:761–768

    Article  PubMed  CAS  Google Scholar 

  • Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448

    Article  PubMed  CAS  Google Scholar 

  • Walter JH (2003) l-Carnitine in inborn errors of metabolism: what is the evidence? J Inherit Metab Dis 26:181–188

    Article  PubMed  CAS  Google Scholar 

  • Yannicelli S (2006) Nutrition therapy of organic acidaemias with amino acid-based formulas: emphasis on methylmalonic and propionic acidaemia. J Inherit Metab Dis 29:281–287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from FAPERGS, PROPESQ/UFRGS, CAPES, CNPq, and FIPE/HCPA-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Graziela S. Ribas or Carmen R. Vargas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribas, G.S., Biancini, G.B., Mescka, C. et al. Oxidative Stress Parameters in Urine from Patients with Disorders of Propionate Metabolism: a Beneficial Effect of l-Carnitine Supplementation. Cell Mol Neurobiol 32, 77–82 (2012). https://doi.org/10.1007/s10571-011-9736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9736-8

Keywords

Navigation