Skip to main content
Log in

Mixed oxide-polyaniline composite-coated woven cotton fabrics for the visible light catalyzed degradation of hazardous organic pollutants

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Clean water and sea free of organic pollutants are among the 17 United Nation Sustainable Development Goals (SDGs). In this global concern, the design of efficient, stable and recyclable catalytic materials remains challenging. In this context, we designed a series of mixed oxide-modified cotton fabrics and their related composites and interrogated their propensity to catalyze the degradation of methyl orange (MO) (a model pollutant). More specifically, functional cotton fabrics (CF) coated with RuO2–TiO2 based-photocatalysts were obtained by dip-coating method at neutral pH. A layer of Polyaniline (PANI) was prepared by in situ oxidative polymerization of the aniline monomer on 4-diphenylamine diazonium salt (DPA) modified-RuO2–TiO2 nanoparticles (NPs) coated-CF. The modified CFs catalyzed photodegradation and mineralization of MO under visible light, which depended on polyaniline mass loading. The CF/RuO2–TiO2/DPA@PANI obtained by in situ polymerization was the best catalyst due to DPA adhesive layer for polyaniline to RuO2–TiO2, and the strong attraction force between cellulose OH groups and anilinium during polymerization. The photodegradation rate constant was 0.101, 0.0532, 0.0775 and 0.0828 min−1 for RuO2–TiO2/DPA@PANI, RuO2–TiO2, RuO2–TiO2/PANI and RuO2–TiO2/DPA/PANI coated-CFs, respectively. The catalytic activity is favored by the photoactive species (OH·,\({\mathrm{O}}_{2}^{-}\)) which are formed by the excitation of electrons under visible light but also by the electronic exchanges at the RuO2//TiO2, RuO2–TiO2//PANI and RuO2–TiO2/PANI//CF interfaces. CF/RuO2–TiO2/DPA/PANI photocatalyst was stable under simulated sunlight and reusable three times. A mechanism is proposed to account for the efficient CF catalytic properties.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig.3
Fig. 4
Fig.5
Fig.6
Fig.7
Fig.8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig.14
Fig.15
Fig. 16
Fig. 17
Fig. 18
Fig.19

Similar content being viewed by others

References

  • Ahmad I, Kan CW, Yao Z (2019) Reactive Blue-25 dye/TiO2 coated cotton fabrics with self-cleaning and UV blocking properties. Cellulose 26(4):2821–2832

    Article  CAS  Google Scholar 

  • Arsov LD, Kormann C, Plieth W (1991) Electrochemical synthesis and in situ Raman spectroscopy of thin films of titanium dioxide. J Raman Spectrosc 22(10):573–575

    Article  CAS  Google Scholar 

  • Augustine R, Dan P, Sosnik A, Kalarikkal N, Tran N, Vincent et al (2017) Electrospun poly (vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Res 10(10):3358–3376

    Article  CAS  Google Scholar 

  • Babushkina MS, Nikitina LP, Goncharov AG, Ponomareva NI (2009) Water in the structure of minerals from mantle peridotites as controlled bythermal and redox conditions in the upper mantle. Geol Ore Depos 51(8):712–722

    Article  Google Scholar 

  • Bejbouji H, Vignau L, Miane JL, Dang MT, Oualim EM, Harmouchi M, Mouhsen A (2010) Polyaniline as a hole injection layer on organic photovoltaic cells. Sol Energy Mater Sol C 94(2):176–181

    Article  CAS  Google Scholar 

  • Bajgar V, Penhaker M, Martinková L, Pavlovič A, Bober P, Trchová M, Stejskal J (2016) Cotton fabric coated with conducting polymers and its application in monitoring of carnivorous plant response. Sensors 16(4):498

    Article  CAS  Google Scholar 

  • Barthet C, Armes SP, Chehimi MM, Bilem C, Omastova M (1998) Surface characterization of polyaniline-coated polystyrene latexes. Langmuir 14(18):5032–5038

    Article  CAS  Google Scholar 

  • Bhat NV, Seshadri DT, Radhakrishnan S (2004) Preparation, characterization, and performance of conductive fabrics: Cotton+ PANi. Text res J 74(2):155–166

    Article  CAS  Google Scholar 

  • Bishop JL, Pieters CM, Edwards JO (1994) Infrared spectroscopic analyses on the nature of water in montmorillonite. Clay Clay Miner 42(6):702–716

    Article  CAS  Google Scholar 

  • Buzzetti L, Crisenza GE, Melchiorre P (2019) Mechanistic studies in photocatalysis. Angew Chem Int Ed Engl 58(12):3730–3747

    Article  CAS  PubMed  Google Scholar 

  • Carrillo F, Colom X, Sunol JJ, Saurina J (2004) Analyse FTIR structurelle et caractérisation thermique de fibres de type lyocell et viscose. Europ Polym J 40(9):2229–2234

    Article  CAS  Google Scholar 

  • Chen R, Jakes KA (2002) Effect of pressing on the infrared spectra of single cotton fibers. Appl Spectr 56(5):646–650

    Article  CAS  Google Scholar 

  • Chen YM, Korotcov A, Hsu HP, Huang YS, Tsai DS (2007) Raman scattering characterization of well-aligned RuO2 nanocrystals grown on sapphire substrates. New J Phys 9(5):130

    Article  CAS  Google Scholar 

  • Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58(4):417–420

    Article  CAS  Google Scholar 

  • Daoud WA, Xin JH (2004) Nucleation and growth of anatase crystallites on cotton fabrics at low temperatures. J Am Ceram Soc 87(5):953–955

    Article  CAS  Google Scholar 

  • Ebnesajjad S (2011) Surface and material characterization techniques. In: Handbook of adhesives and surface preparation. William Andrew Publishing, pp 31–48

  • Eskizeybek V, Sarı F, Gülce H, Gülce A, Avcı A (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. App Catal B Environ 119:197–206

    Article  CAS  Google Scholar 

  • Faruk O, Ain M. S (2013) Biofiber reinforced polymer composites for structural applications. In: Developments in fiber-reinforced polymer (FRP) composites for civil engineering. Woodhead Publishing, pp 18–53

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • Fujii S, Nakamura Y (2013) Surface coating of soft materials with conducting polymer-metal nanocomposite. Appl Surf Chem Nanomat 303–318

  • Garand E, Wende T, Goebbert DJ, Bergmann R, Meijer G, Neumark DM, Asmis KR (2009) Infrared spectroscopy of hydrated bicarbonate anion clusters: HCO3−(H2O) 1–10. J Am Chem Soc 132(2):849–856

    Article  CAS  Google Scholar 

  • Gilbert C, Kokot S, Meyer U (1993) Application of DRIFT spectroscopy and chemometrics for the comparison of cotton fabrics. Appl Spectr 47(6):741–748

    Article  CAS  Google Scholar 

  • Gopakumar DA, Pai AR, Pottathara YB, Pasquini D, Carlos de Morais L, Luke M, Kalarikkal N, Grohens Y, Thomas S (2018) Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band. ACS Appl Mater Interfaces 10(23):20032–20043

    Article  CAS  PubMed  Google Scholar 

  • Hassan MM, Leighs SJ (2017) Effect of surface treatments on physicomechanical, stain-resist, and UV protection properties of wool fabrics. Appl Surf Sci 419:348–356

    Article  CAS  Google Scholar 

  • Hu T, Zheng YN, Li MJ, Liang WB, Chai YQ, Yuan R (2018) A highly sensitive photoelectrochemical assay with donor–acceptor-type material as photoactive material and polyaniline as signal enhancer. Anal Chem 90(10):6096–6101

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Jiang Y, Zhang M, Li H, Xiao L, Li M, Ao Y (2018) Oriented polyaniline nanowire arrays grown on dendrimer (PAMAM) functionalized multiwalled carbon nanotubes as supercapacitor electrode materials. Sci Rep 8(1):6268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jlassi K, Mekki A, Benna-Zayani M, Singh A, Aswal DK, Chehimi MM (2014) Exfoliated clay/polyaniline nanocomposites through tandem diazonium cation exchange reactions and in situ oxidative polymerization of aniline. RSC Adv 4(110):65213–65222

    Article  CAS  Google Scholar 

  • Kim TS, Cha JR, Gong MS (2018) Investigation of the antimicrobial and wound healing properties of silver nanoparticle-loaded cotton prepared using silver carbamate. Text Res J 88(7):766–776

    Article  CAS  Google Scholar 

  • Krishnamoorthy K, Navaneethaiyer U, Mohan R, Lee J, Kim SJ (2012) Graphene oxide nanostructures modified multifunctional cotton fabrics. Appl Nanosci 2(2):119–126

    Article  CAS  Google Scholar 

  • Kumar A, Pandey G (2018) Comparative photocatalytic degradation of rose bengal dye under visible light by TiO2, TiO2/PAni and TiO2/PANI/GO nanocomposites. Int J Res Appl Sci Eng Technol 6:339–344

    Article  CAS  Google Scholar 

  • Leroux YR, Fei H, Noël JM, Roux C, Hapiot P (2010) Efficient covalent modification of a carbon surface: use of a silyl protecting group to form an active monolayer. J Am Chem Soc 132(40):14039–14041

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yu Y, Wu L, Zhi J (2013) Processable polyaniline/titania nanocomposites with good photocatalytic and conductivity properties prepared via peroxo-titanium complex catalyzed emulsion polymerization approach. Appl Surf Sci 273:135–143

    Article  CAS  Google Scholar 

  • Lv J, Zhou P, Zhang L, Zhong Y, Sui X, Wang B et al (2019) High-performance textile electrodes for wearable electronics obtained by an improved in situ polymerization method. Chem Eng J 361:897–907

    Article  CAS  Google Scholar 

  • Mar SY, Chen CS, Huang YS, Tiong KK (1995) Characterization of RuO2 thin films by Raman spectroscopy. Appl Surf Sci 90(4):497–504

    Article  CAS  Google Scholar 

  • Mayer-Gall T, Lee JW, Opwis K, List B, Gutmann JS (2016) Textile catalysts—an unconventional approach towards heterogeneous catalysis. Chem Cat Chem 8(8):1428–1436

    CAS  Google Scholar 

  • Mishra A, Butola BS (2018) Development of cotton fabrics with durable UV protective and self-cleaning property by deposition of low TiO2 levels through sol–gel process. Photochem Photobiol 94(3):503–511

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Butola B. S (2019a) Photocatalytic Decolorization of Rhodamine B Dye Solution Using TiO2 Coated Cotton Fabric. In: Functional Textiles and Clothing. Springer, Singapore. pp 139–150

  • Mishra A, Butola BS (2019) Silver-doped TiO2-coated cotton fabric as an effective photocatalytic system for dye decolorization in UV and visible light. Photochem Photobiol 95(2):522–531

    Article  CAS  PubMed  Google Scholar 

  • Mousli F, Chaouchi A, Hocine S, Lamouri A, Vilar MR, Kadri A, Chehimi MM (2019) Diazonium-modified TiO2/polyaniline core/shell nanoparticles. structural characterization, interfacial aspects and photocatalytic performances. Appl Surf Sci 465:1078–1095

    Article  CAS  Google Scholar 

  • Mousli F, Chaouchi A, Jouini M, Maurel F, Kadri A, Chehimi MM (2019) Polyaniline-grafted RuO2-TiO2 heterostructure for the catalysed degradation of methyl orange in darkness. Catalysts 9(7):578

    Article  CAS  Google Scholar 

  • Musić S, Popović S, Maljković M, Furić K, Gajović A (2002) Influence of synthesis procedure on the formation of RuO2. Mater Lett 56(5):806–811

    Article  Google Scholar 

  • Muthukumar N, Thilagavathi G (2012) Development and characterization of electrically conductive polyaniline coated fabrics. Indian J Chem Technol 19:423–441

    Google Scholar 

  • Nosrati R, Olad A, Najjari H (2017) Study of the effect of TiO2/polyaniline nanocomposite on the self-cleaning property of polyacrylic latex coating. Surf Coat Technol 316:199–209

    Article  CAS  Google Scholar 

  • Onar N, Akşit AC, Ebeoglugil MF, Birlik I, Celik E, Ozdemir I (2009) Structural, electrical, and electromagnetic properties of cotton fabrics coated with polyaniline and polypyrrole. J Appl Polym Sci 114(4):2003–2010

    Article  CAS  Google Scholar 

  • Park YR, Doh JH, Shin K, Seo YS, Kim YS, Kim SY, Kim SY, Choi WK, Hong YJ (2015) Solution-processed quantum dot light-emitting diodes with PANI: PSS hole-transport interlayers. Org Electron 19:131–139

    Article  CAS  Google Scholar 

  • Ramírez JAÁ, Suriano CJ, Cerrutti P, Foresti ML (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polymers 114:416–423

    Article  CAS  Google Scholar 

  • Revaiah RG, Kotresh TM, Kandasubramanian B (2019) Technical textiles for military applications. J Text Inst 1–36

  • Rogalsky S, Bardeau JF, Makhno S, Babkina N, Tarasyuk O, Cherniavska T, Orlovska I, Kozyrovska N, Brovko O (2018) New proton conducting membrane based on bacterial cellulose/polyaniline nanocomposite film impregnated with guanidinium-based ionic liquid. Polymer 142:183–195

    Article  CAS  Google Scholar 

  • Savitha KU, Prabu HG (2013) Polyaniline–TiO2 hybrid-coated cotton fabric for durable electrical conductivity. J Appl Polym Sci 127(4):3147–3151

    Article  CAS  Google Scholar 

  • Shahidi S, Wiener J, Ghoranneviss M (2013) Surface modification methods for improving the dyeability of textile fabrics. Eco-friendly textile dyeing and finishing. InTech, Rijeka, pp 33–52

    Google Scholar 

  • Shen T, Jiang C, Wang C, Sun J, Wang X, Li X (2015) A TiO2 modified abiotic–biotic process for the degradation of the azo dye methyl orange. RSC Adv 5(72):58704–58712

    Article  CAS  Google Scholar 

  • Stan MS, Nica IC, Popa M, Chifiriuc MC, Iordache O, Dumitrescu et al (2018) Reduced graphene oxide/TiO2 nanocomposites coating of cotton fabrics with antibacterial and self-cleaning properties. J Ind Text 49(3):277–293

    Article  CAS  Google Scholar 

  • Tanwar R, Mandal UK (2019) Photocatalytic activity of Ni0.5Zn0.5Fe2O4@ polyaniline decorated BiOCl for azo dye degradation under visible light–integrated role and degradation kinetics interpretation. RSC Adv 9(16):8977–8993

    Article  CAS  Google Scholar 

  • Tao J, Tang B, Li P, He D, Liao L, Peng Z, Wang X (2018) Natural rubber particle modified fabrics with catalytic activity and hydrophobicity. Compos Sci Technol 162:123–130

    Article  CAS  Google Scholar 

  • Tissera ND, Wijesena RN, Rathnayake S, de Silva RM, de Silva KN (2018) Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: improved electrical conductivity, electrical switching, and tuning properties. Carbohydr polym 186:35–44

    Article  CAS  PubMed  Google Scholar 

  • Uddin MJ, Cesano F, Scarano D, Bonino F, Agostini G, Spoto et al (2008) Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self cleaning properties. J Photochem Photobiol A Chem 199(1):64–72

    Article  CAS  Google Scholar 

  • Wang J, Lu X, Wang J, Wang X (2019) Quantitative and sensory evaluation of odor retention on polyester/wool blends. Text Res J 89(13):2729–2738

    Article  CAS  Google Scholar 

  • Wang Y, Ding X, Zhang P, Wang Q, Zheng K, Chen L et al (2019) Convenient and recyclable TiO2/g-C3N4 photocatalytic coating: layer-by-layer self-assembly construction on cotton fabrics leading to improved catalytic activity under visible light. Ind Eng Chem Res 58(10):3978–3987

    Article  CAS  Google Scholar 

  • Wu M, Ma B, Pan T, Chen S, Sun J (2016) Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healingsuperhydrophobic properties. Adv Funct Mater 26(4):569–576

    Article  CAS  Google Scholar 

  • Xi J, Xiao J, Xiao F, Jin Y, Dong Y, Jing F, Wang (2016) Mus-inspired functionalization of cotton for nano-catalyst support and its application in a fixed-bed system with high performance. Sci Rep 6:21904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong P, Chen Q, He M, Sun X, Wang X (2012) Cobalt ferrite–polyaniline heteroarchitecture: a magnetically recyclable photocatalyst with highly enhanced performances. J Mater Chem 22(34):17485–17493

    Article  CAS  Google Scholar 

  • Xu Q, Li M, Yan P, Wei C, Fang L, Wei W et al (2016) Polypyrrole-coated cotton fabrics prepared by electrochemical polymerization as textile counter electrode for dye-sensitized solar cells. Org Electr 29:107–113

    Article  CAS  Google Scholar 

  • Yang B, Zhao C, Xiao M, Wang F, Li C, Wang J, Yu JC (2013) Loading metal nanostructures on cotton fabrics as recyclable catalysts. Small 9(7):1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Zahran MK, Ahmed HB, El-Rafie MH (2014) Surface modification of cotton fabrics for antibacterial application by coating with AgNPs–alginate composite. Carbohydr POLYM 108:145–152

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu P, Su Z (2006) Preparation of PANI–TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polym Degrad Stabil 91(9):2213–2219

    Article  CAS  Google Scholar 

  • Zhang F, Zhang Y, Zhang G, Yang Z, Dionysiou DD, Zhu A (2018) Exceptional synergistic enhancement of the photocatalytic activity of SnS2 by coupling with polyaniline and N-doped reduced graphene oxide. App Catal B: Environ 236:53–63

    Article  CAS  Google Scholar 

  • Zhou P, Lv J, Xu H, Wang X, Sui X, Zhong Y et al (2019) Functionalization of cotton fabric with bismuth oxyiodide nanosheets: applications for photodegrading organic pollutants UV shielding and self-cleaning. Cellulose 26(4):2873–2884

    Article  CAS  Google Scholar 

  • Zhu C, Shi J, Xu S, Ishimori M, Sui J, Morikawa H (2017) Design and characterization of self-cleaning cotton fabrics exploiting zinc oxide nanoparticle-triggered photocatalytic degradation. Cellulose 24(6):2657–2667

    Article  CAS  Google Scholar 

  • Zhu L, Liu Y, Ding X, Wu X, Sand W, Zhou H (2019) A novel method for textile odor removal using engineered water nanostructures. RSC Adv 9(31):17726–17736

    Article  CAS  Google Scholar 

Download references

Acknowledgments

FM would like to thank Campus France for the provision of PROFAS B + fellowship. All authors are indebted to NATO for financial support through the SfP program (CATALTEX project No 984842). AMK wishes to thank the French Government for funding his contribution through a fellowship granted by the French Embassy in Egypt (Institut Français d’Egypte).

Funding

Funding was provided by Campus France (Grant No. 880797C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatima Mousli or Mohamed M. Chehimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousli, F., Khalil, A.M., Maurel, F. et al. Mixed oxide-polyaniline composite-coated woven cotton fabrics for the visible light catalyzed degradation of hazardous organic pollutants. Cellulose 27, 7823–7846 (2020). https://doi.org/10.1007/s10570-020-03302-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03302-7

Keywords

Navigation