Skip to main content
Log in

Polymer-capped gold nanoparticles and ZnO nanorods form binary photocatalyst on cotton fabrics: Catalytic breakdown of dye

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

This work reports the immobilization of zinc oxide (ZnO) nanostructures and gold nanoparticles (AuNPs) on cotton fabrics (CFs). The ZnO and AuNPs containing CF composite materials demonstrated excellent photocatalytic activity towards degradation of the model organic dye molecule. A two-step method was used to first create zinc oxide nanorods (ZnONRs) on the CF fibers. Subsequently, these ZnONRs were decorated with cationic polymer-capped AuNPs to yield the composite materials. A one-pot synthetic route was developed to synthesize polymer-capped AuNPs. The water-soluble cationic polymers used here are polyguanidino oxanorbornenes (PGONs) at 20 kDa and polyamino oxanorbornenes (PAONs) at 20 kDa. UV—vis was utilized to monitor the composite materials’ photocatalytic activity in degrading model organic dye molecules. All the materials were characterized by FTIR, UV—visible DRS, SEM, EDX, and XRD. The composite materials exhibited excellent photocatalytic activity and recyclability in the presence of UV light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng H, Cai W, Liu P, et al. ZnO-based hollow nanoparticles by selective etching: Elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano, 2008, 2(8): 1661–1670

    Article  CAS  Google Scholar 

  2. Wang X, Liao M, Zhong Y, et al. ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors. Advanced Materials, 2012, 24(25): 3421–3425

    Article  CAS  Google Scholar 

  3. Han Z, Ren L, Cui Z, et al. Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Applied Catalysis B: Environmental, 2012, 126: 298–305

    Article  CAS  Google Scholar 

  4. Li P, Wei Z, Wu T, et al. Au-ZnO hybrid nanopyramids and their photocatalytic properties. Journal of the American Chemical Society, 2011, 133(15): 5660–5663

    Article  CAS  Google Scholar 

  5. Gargas D J, Gao H, Wang H, et al. High quantum efficiency of band-edge emission from ZnO nanowires. Nano Letters, 2011, 11(9): 3792–3796

    Article  CAS  Google Scholar 

  6. Huang K, Li Y H, Lin S, et al. A facile route to reduced graphene oxide-zinc oxide nanorod composites with enhanced photocatalytic activity. Powder Technology, 2014, 257: 113–119

    Article  CAS  Google Scholar 

  7. Ko S H, Lee D, Kang H W, et al. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dyesensitized solar cell. Nano Letters, 2011, 11(2): 666–671

    Article  CAS  Google Scholar 

  8. Zhang Y, Yang Y, Wang Z L. Piezo-phototronics effect on nano/microwire solar cells. Energy & Environmental Science, 2012, 5(5): 6850–6856

    Article  CAS  Google Scholar 

  9. Yang T H, Huang L D, Harn Y W, et al. High density unaggregated Au nanoparticles on ZnO nanorod arrays function as efficient and recyclable photocatalysts for environmental purification. Small, 2013, 9(18): 3169–3182

    Article  CAS  Google Scholar 

  10. Tang Q, Lin L, Zhao X, et al. p-n Heterojunction on ordered ZnO nanowires/polyaniline microrods double array. Langmuir, 2012, 28(8): 3972–3978

    Article  CAS  Google Scholar 

  11. Saleh T A, Gondal M A, Drmosh Q A. Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser. Nanotechnology, 2010, 21(49): 495705

    Article  CAS  Google Scholar 

  12. She P, Xu K, Zeng S, et al. Investigating the size effect of Au nanospheres on the photocatalytic activity of Au-modified ZnO nanorods. Journal of Colloid and Interface Science, 2017, 499: 76–82

    Article  CAS  Google Scholar 

  13. Pare B, Jonnalagadda S B, Tomar H, et al. ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination, 2008, 232(1–3): 80–90

    Article  CAS  Google Scholar 

  14. Juneja S, Madhavan A A, Ghosal A, et al. Synthesis of graphenized Au/ZnO plasmonic nanocomposites for simultaneous sunlight mediated photo-catalysis and anti-microbial activity. Journal of Hazardous Materials, 2018, 347: 378–389

    Article  CAS  Google Scholar 

  15. She P, Xu K, Yin S, et al. Bioinspired self-standing macroporous Au/ZnO sponges for enhanced photocatalysis. Journal of Colloid and Interface Science, 2018, 514: 40–48

    Article  CAS  Google Scholar 

  16. Guo W, Zhang F, Lin C, et al. Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Advanced Materials, 2012, 24(35): 4761–4764

    Article  CAS  Google Scholar 

  17. Zhang X, Ren H, Wang T, et al. Controlled synthesis and magnetically separable photocatalytic properties of magnetic iron oxides@SnO2 yolk-shell nanocapsules. Journal of Materials Chemistry, 2012, 22(26): 13380–13385

    Article  CAS  Google Scholar 

  18. Nunes B N, Paula L F, Costa I A, et al. Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 32: 1–20

    Article  CAS  Google Scholar 

  19. Yu X, Wang S, Zhang X, et al. Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy, 2018, 46: 29–38

    Article  CAS  Google Scholar 

  20. Baruah B. In situ and facile synthesis of silver nanoparticles on baby wipes and their applications in catalysis and SERS. RSC Advances, 2016, 6(6): 5016–5023

    Article  CAS  Google Scholar 

  21. Pandiyarasan V, Suhasini S, Archana J, et al. Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications. Applied Surface Science, 2017, 418: 352–361

    Article  CAS  Google Scholar 

  22. Manna J, Goswami S, Shilpa N, et al. Biomimetic method to assemble nanostructured Ag@ZnO on cotton fabrics: Application as self-cleaning flexible materials with visible-light photocatalysis and antibacterial activities. ACS Applied Materials & Interfaces, 2015, 7(15): 8076–8082

    Article  CAS  Google Scholar 

  23. Wang R, Wang X, Xin J H. Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts. ACS Applied Materials & Interfaces, 2010, 2(1): 82–85

    Article  CAS  Google Scholar 

  24. She P, Yin S, He Q, et al. A self-standing macroporous Au/ZnO/reduced graphene oxide foam for recyclable photocatalysis and photocurrent generation. Electrochimica Acta, 2017, 246: 35–42

    Article  CAS  Google Scholar 

  25. Li R, Hu J, Deng M, et al. Integration of an inorganic semiconductor with a metal-organic framework: A platform for enhanced gaseous photocatalytic reactions. Advanced Materials, 2014, 26(28): 4783–4788

    Article  CAS  Google Scholar 

  26. Wang X, Liu J, Leong S, et al. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Applied Materials & Interfaces, 2016, 8(14): 9080–9087

    Article  CAS  Google Scholar 

  27. Athauda T J, Hari P, Ozer R R. Tuning physical and optical properties of ZnO nanowire arrays grown on cotton fibers. ACS Applied Materials & Interfaces, 2013, 5(13): 6237–6246

    Article  CAS  Google Scholar 

  28. Baruah B, Gabriel G J, Akbashev M J, et al. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir, 2013, 29(13): 4225–4234

    Article  CAS  Google Scholar 

  29. Baruah B, Downer L, Agyeman D. Fabric-based composite materials containing ZnO-NRs and ZnO-NRs-AuNPs and their application in photocatalysis. Materials Chemistry and Physics, 2019, 231: 252–259

    Article  CAS  Google Scholar 

  30. Wilke T, Schneider M, Kleinermanns K. 1,4-Hydroquinone is a hydrogen reservoir for fuel cells and recyclable via photocatalytic water splitting. Open Journal of Physical Chemistry, 2013, 3: 97–102

    Article  CAS  Google Scholar 

  31. Page S E, Arnold W A, McNeill K. Terephthalate as a probe for photochemically generated hydroxyl radical. Journal of Environmental Monitoring, 2010, 12(9): 1658–1665

    Article  CAS  Google Scholar 

  32. Lu H, Fei B, Xin J H, et al. Fabrication of UV-blocking nanohybrid coating via miniemulsion polymerization. Journal of Colloid and Interface Science, 2006, 300(1): 111–116

    Article  CAS  Google Scholar 

  33. Vimala K, Mohan Y M, Sivudu K S, et al. Fabrication of porous chitosan films impregnated with silver nanoparticles: A facile approach for superior antibacterial application. Colloids and Surfaces B: Biointerfaces, 2010, 76(1): 248–258

    Article  CAS  Google Scholar 

  34. Xia W, Mei C, Zeng X, et al. Nanoplate-built ZnO hollow microspheres decorated with gold nanoparticles and their enhanced photocatalytic and gas-sensing properties. ACS Applied Materials & Interfaces, 2015, 7(22): 11824–11832

    Article  CAS  Google Scholar 

  35. Jiang Z, Jiang D, Yan Z, et al. A new visible light active multifunctional ternary composite based on TiO2-In2O3 nano-crystals heterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutant and H2 evolution. Applied Catalysis B: Environmental, 2015, 170–171: 195–205

    Article  CAS  Google Scholar 

  36. Sun L, Zhao D, Zhang Z, et al. DNA-based fabrication of density-controlled vertically aligned ZnO nanorod arrays and their SERS applications. Journal of Materials Chemistry, 2011, 21(26): 9674–9681

    Article  CAS  Google Scholar 

  37. Viter R, Balevicius Z, Abou Chaaya A, et al. The influence of localized plasmons on the optical properties of Au/ZnO nanostructures. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(26): 6815–6821

    Article  CAS  Google Scholar 

  38. Sun L, Zhao D, Song Z, et al. Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity. Journal of Colloid and Interface Science, 2011, 363(1): 175–181

    Article  CAS  Google Scholar 

  39. Xiao F, Wang F, Fu X, et al. A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. Journal of Materials Chemistry, 2012, 22(7): 2868–2877

    Article  CAS  Google Scholar 

  40. Ruiz Peralta M L, Pal U, Zeferino R S. Photoluminescence (PL) quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis. ACS Applied Materials & Interfaces, 2012, 4(9): 4807–4816

    Article  CAS  Google Scholar 

  41. Wen C, Liao F, Liu S, et al. Bi-functional ZnO-RGO-Au substrate: Photocatalysts for degrading pollutants and SERS substrates for real-time monitoring. Chemical Communications, 2013, 49(29): 3049–3051

    Article  CAS  Google Scholar 

  42. Mondal C, Pal J, Ganguly M, et al. A one pot synthesis of Au-ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity. New Journal of Chemistry, 2014, 38(7): 2999–3005

    Article  CAS  Google Scholar 

  43. Bora T, Zoepfl D, Dutta J. Importance of plasmonic heating on visible light driven photocatalysis of gold nanoparticle decorated zinc oxide nanorods. Scientific Reports, 2016, 6(1): 26913

    Article  CAS  Google Scholar 

  44. Bramhaiah K, Singh V N, John N S. Hybrid materials of ZnO nanostructures with reduced graphene oxide and gold nanoparticles: Enhanced photodegradation rates in relation to their composition and morphology. Physical Chemistry Chemical Physics, 2016, 18(3): 1478–1486

    Article  CAS  Google Scholar 

  45. She P, Xu K, He Q, et al. Controlled preparation and visible light photocatalytic activities of corn cob-like Au-ZnO nanorods. Journal of Materials Science, 2017, 52(6): 3478–3489

    Article  CAS  Google Scholar 

  46. Le C H, Nguyen O T T, Nguyen H S, et al. Controllable synthesis and visible-active photocatalytic properties of Au nanoparticles decorated urchin-like ZnO nanostructures. Current Applied Physics, 2017, 17(11): 1506–1512

    Article  Google Scholar 

  47. Xia X, Zhang J, Sawall T. A simple colorimetric method for the quantification of Au(III) ions and its use in quantifying Au nanoparticles. Analytical Methods, 2015, 7(9): 3671–3675

    Article  CAS  Google Scholar 

  48. Zhang S, Zhang Z, Wang T, et al. High-throughput and ultratrace naked-eye colorimetric detection of Au3+ based on the gold amalgam-stimulated peroxidase mimetic activity in aqueous solutions. Chemical Communications, 2017, 53(36): 5056–5058

    Article  CAS  Google Scholar 

  49. Huo Y, Lu J, Lu T, et al. Comparative studies on OLED performances of chloro and fluoro substituted Zn(II) 8-hydroxyquinolinates. New Journal of Chemistry, 2015, 39(1): 333–341

    Article  CAS  Google Scholar 

  50. Yang X, Wang D. Photocatalysis: From fundamental principles to materials and applications. ACS Applied Energy Materials, 2018, 1(12): 6657–6693

    Article  CAS  Google Scholar 

  51. Furube A, Hashimoto S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: New dimensions in energy conversion and nanofabrication. NPG Asia Materials, 2017, 9(12): e454

    Article  CAS  Google Scholar 

  52. Wu K, Chen J, McBride J R, et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science, 2015, 349(6248): 632–635

    Article  CAS  Google Scholar 

  53. DuChene J S, Sweeny B C, Johnston-Peck A C, et al. Prolonged hot electron dynamics in plasmonic-metal/semiconductor hetero-structures with implications for solar photocatalysis. Angewandte Chemie International Edition, 2014, 53(30): 7887–7891

    Article  CAS  Google Scholar 

  54. Attri P, Kim Y H, Park D H, et al. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Scientific Reports, 2015, 5(1): 9332

    Article  Google Scholar 

  55. Reddy D A, Choi J, Lee S, et al. Green synthesis of AgI nanoparticle-functionalized reduced graphene oxide aerogels with enhanced catalytic performance and facile recycling. RSC Advances, 2015, 5(83): 67394–67404

    Article  CAS  Google Scholar 

  56. Yang Y, Ma Z, Xu L, et al. Preparation of reduced graphene oxide/meso-TiO2/AuNPs ternary composites and their visible-light-induced photocatalytic degradation of methylene blue. Applied Surface Science, 2016, 369: 576–583

    Article  CAS  Google Scholar 

  57. Zhang H, Zhu Y. Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization. The Journal of Physical Chemistry C, 2010, 114(13): 5822–5826

    Article  CAS  Google Scholar 

  58. Draper W M, Crosby D G. Photochemical generation of superoxide radical anion in water. Journal of Agricultural and Food Chemistry, 1983, 31(4): 734–737

    Article  CAS  Google Scholar 

  59. Liu T, Wang L, Lu X, et al. Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: Adsorption, active species, and pathways. RSC Advances, 2017, 7(20): 12292–12300

    Article  CAS  Google Scholar 

  60. Gulaboski R, Bogeski I, Mirčeski V, et al. Hydroxylated derivatives of dimethoxy-1,4-benzoquinone as redox switchable earth-alkaline metal ligands and radical scavengers. Scientific Reports, 2013, 3(1): 1865

    Article  CAS  Google Scholar 

  61. Samiee F, Pedron F N, Estrin D A, et al. Experimental and theoretical study of the high-temperature UV-visible spectra of aqueous hydroquinone and 1,4-benzoquinone. The Journal of Physical Chemistry B, 2016, 120(40): 10547–10552

    Article  CAS  Google Scholar 

  62. Kouras-Hadef S, Amine-Khodja A, Halladja S, et al. Influence of humic substances on the riboflavin photosensitized transformation of 2,4,6-trimethylphenol. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 229(1): 33–38

    Article  CAS  Google Scholar 

  63. Ye X, Wang Z, Ma L, et al. Zinc oxide array/polyurethane nanocomposite coating: Fabrication, characterization and corrosion resistance. Surface and Coatings Technology, 2019, 358: 497–504

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Department of Chemistry and Biochemistry, KSU; KSU CSM Mentor Protégé (BARUAH-01-FY2018-08) award, and Research Stimulus Program (RSP) fund in supporting the research. We also acknowledge Robert P. Apkarian Integrated Electron Microscopy Core of Emory University for its support with electron microscopy images. Special thanks to Dr. Gregory Gabriel for his generous gift of the water-soluble cationic polymers PGON and PAON. B.B. also acknowledges Dr. Mark Mitchell, Department Chair of the Department of Chemistry and Biochemistry, KSU, for his constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Baruah.

Ethics declarations

Disclosure of potential conflicts of interests The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, B., Kelley, C., Djokoto, G.B. et al. Polymer-capped gold nanoparticles and ZnO nanorods form binary photocatalyst on cotton fabrics: Catalytic breakdown of dye. Front. Mater. Sci. 15, 431–447 (2021). https://doi.org/10.1007/s11706-021-0565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0565-5

Keywords

Navigation