Skip to main content
Log in

Recent developments and prospective food-related applications of cellulose nanocrystals: a review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs) with prominent mechanical properties are well known as the natural reinforcing elements in composites and have received considerable interest over the past decades. Numerous original resources and extraction methods were applied to obtaining CNCs, and the surface properties of CNCs were modified to improve the compatibility with polymeric matrices. Despite these different raw materials and treatments, various novel applications of CNCs have been developed in recent years. Among them, the food-related applications of CNCs have attracted more and more attention because of their renewability, outstanding mechanical properties, unique nanoscale structure, biocompatibility, and easy surface modifications. This review summarized the recent work on the extraction, modification, and food-related applications of CNCs. Traditional raw materials, such as cotton, wood, and tunicate, were still widely used, while there is a new trend to obtain CNCs from waste biomass. Different pretreatments, extraction processes, and surface modifications were compared and discussed. Moreover, the potential applications of CNCs in food packaging, food thickener, emulsion stabilization, quality sensor, and active compound immobilization were presented. Finally, concerns about safety and sustainability have been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced from Bai et al. (2018c) with permission of the American Chemical Society

Fig. 4

Reproduced from El Achaby et al. (2017) with permission of Elsevier

Fig. 5

Reproduced from Yuan et al. (2018) with permission from the Royal Society of Chemistry

Similar content being viewed by others

References

  • Abo-Elseoud WS, Hassan ML, Sabaa MW, Basha M, Hassan EA, Fadel SM (2018) Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int J Biol Macromol 111:604–613

    CAS  PubMed  Google Scholar 

  • Abouhmad A, Dishisha T, Amin MA, Hatti-Kaul R (2017) Immobilization to positively charged cellulose nanocrystals enhances the antibacterial activity and stability of hen egg white and T4 Lysozyme. Biomacromol 18:1600–1608. https://doi.org/10.1021/acs.biomac.7b00219

    Article  CAS  Google Scholar 

  • Ambrosio-Martin J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose 22:1201–1226. https://doi.org/10.1007/s10570-014-0523-9

    Article  CAS  Google Scholar 

  • Anzlovar A, Kunaver M, Zagar E, Krajnc A (2018) Nanocomposites of LLDPE and surface-modified cellulose nanocrystals prepared by melt processing. Molecules 23:1782. https://doi.org/10.3390/molecules23071782

    Article  CAS  PubMed Central  Google Scholar 

  • Arcot LR, Lundahl M, Rojas OJ, Laine JJC (2014) Asymmetric cellulose nanocrystals: thiolation of reducing end groups via NHS–EDC coupling. Cellulose 21:4209–4218. https://doi.org/10.1007/s10570-014-0426-9

    Article  CAS  Google Scholar 

  • Arrieta MP, Fortunati E, Dominici F, Lopez J, Kenny JM (2015) Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohyd Polym 121:265–275

    CAS  Google Scholar 

  • Auclair N, Kaboorani A, Riedl B, Landry V, Hosseinaei O, Wang S (2018) Influence of modified cellulose nanocrystals (CNC) on performance of bionanocomposite coatings. Prog Org Coat 123:27–34

    CAS  Google Scholar 

  • Bai HY, Li ZK, Zhang SW, Wang W, Dong WF (2018a) Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohyd Polym 200:468–476. https://doi.org/10.1016/j.carbpol.2018.08.041

    Article  CAS  Google Scholar 

  • Bai L, Huan S, Xiang W, Rojas OJ (2018b) Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chem 20:1571–1582. https://doi.org/10.1039/C8GC00134K

    Article  CAS  Google Scholar 

  • Bai L, Xiang W, Huan S, Rojas OJ (2018c) Formulation and stabilization of concentrated edible oil-in-water emulsions based on electrostatic complexes of a food-grade cationic surfactant (ethyl lauroyl arginate) and cellulose nanocrystals. Biomacromol 19:1674–1685. https://doi.org/10.1021/acs.biomac.8b00233

    Article  CAS  Google Scholar 

  • Bai L et al (2019a) Adsorption and assembly of cellulosic and lignin colloids at oil/water interfaces. Langmuir 35:571–588. https://doi.org/10.1021/acs.langmuir.8b01288

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Lv SS, Xiang WC, Huan SQ, McClements DJ, Rojas OJ (2019b) Oil-in-water pickering emulsions via microfluidization with cellulose nanocrystals: 2 In vitro lipid digestion. Food Hydrocolloids 96:709–716. https://doi.org/10.1016/j.foodhyd.2019.04.039

    Article  CAS  Google Scholar 

  • Bai L, Lv SS, Xiang WC, Huan SQ, McClements DJL, Rojas OJ (2019c) Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. For Stab Food Hydrocoll 96:699–708. https://doi.org/10.1016/j.foodhyd.2019.04.038

    Article  CAS  Google Scholar 

  • Beltramino F, Roncero MB, Vidal T, Valls C (2018) A novel enzymatic approach to nanocrystalline cellulose preparation. Carbohyd Polym 189:39–47

    CAS  Google Scholar 

  • Beyene D, Chae M, Dai J, Danumah C, Tosto F, Demesa AG, Bressler DC (2017) Enzymatically-mediated co-production of cellulose nanocrystals and fermentable sugars. Catalysts 7:322. https://doi.org/10.3390/catal7110322

    Article  CAS  Google Scholar 

  • Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230. https://doi.org/10.1021/bm400219u

    Article  CAS  Google Scholar 

  • Capron I, Rojas OJ, Bordes R (2017) Behavior of nanocelluloses at interfaces. Curr Opin Colloid Interface Sci 29:83–95

    CAS  Google Scholar 

  • Cesar NR, de Menezes AJ, Botaro VR (2018) Nanocomposite of cellulose acetate reinforced with nanocrystals modified chemically: modification with bifunctional reagent. Polym Compos 40:E321–E332. https://doi.org/10.1002/pc.24660

    Article  CAS  Google Scholar 

  • Chen GY, Yu HY, Zhang CH, Zhou Y, Yao JM (2016) A universal route for the simultaneous extraction and functionalization of cellulose nanocrystals from industrial and agricultural celluloses. J Nanopart Res 18:48

    Google Scholar 

  • Chen YW, Tan TH, Lee HV, Abd Hamid SB (2017) Easy fabrication of highly thermal-stable cellulose nanocrystals using Cr(NO3)(3) catalytic hydrolysis system: a feasibility study from macro- to nano-dimensions. Materials 10:42. https://doi.org/10.3390/ma10010042

    Article  CAS  PubMed Central  Google Scholar 

  • Chen Q-H, Zheng J, Xu Y-T, Yin S-W, Liu F, Tang C-H (2018) Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals. Food Hydrocolloids 75:125–130

    CAS  Google Scholar 

  • Cheng Q, Ye D, Chang C, Zhang L (2017) Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. J Membr Sci 525:1–8

    CAS  Google Scholar 

  • Chieng B, Lee S, Ibrahim N, Then Y, Loo Y (2017) Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers. https://doi.org/10.3390/polym9080355

    Article  PubMed  PubMed Central  Google Scholar 

  • Coelho CCS et al (2018) Cellulose nanocrystals from grape pomace: production, properties and cytotoxicity assessment. Carbohydr Polym 192:327–336. https://doi.org/10.1016/j.carbpol.2018.03.023

    Article  CAS  PubMed  Google Scholar 

  • DeLoid GM et al (2019) Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models Environ Sci. NANO 6:2105–2115. https://doi.org/10.1039/c9en00184k

    Article  CAS  Google Scholar 

  • Demetrescu I et al (2016) Isolation of nanocrystalline cellulose from oil palm empty fruit bunch—a response surface methodology study. Paper presented at the MATEC Web of Conferences, 2016/06/08

  • Dhar P, Gaur SS, Kumar A, Katiyar V (2018) Cellulose nanocrystal templated graphene nanoscrolls for high performance supercapacitors and hydrogen storage: an experimental and molecular simulation study. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-22123-0

    Article  CAS  Google Scholar 

  • Dias ARG, Zavareze ED, Helbig E, de Moura FA, Vargas CG, Ciacco CF (2011) Oxidation of fermented cassava starch using hydrogen peroxide. Carbohyd Polym 86:185–191

    CAS  Google Scholar 

  • Ding MC, Li CW, Chen FS (2017) Isolation and characterization of cellulose nanocrystals from cloth hairs and evaluation of their compatibility with PLLA. Cellulose 24:4785–4792. https://doi.org/10.1007/s10570-017-1461-0

    Article  CAS  Google Scholar 

  • Dong F, Li S (2018) Wound dressings based on chitosan-dialdehyde cellulose nanocrystals-silver nanoparticles: mechanical strength, antibacterial activity and cytotoxicity. Polymers (Basel, Switz) 10:673. https://doi.org/10.3390/polym10060673

    Article  CAS  Google Scholar 

  • Dong L, Zhang X, Ren S, Lei T, Sun X, Qi Y, Wu Q (2016) Poly(diallyldimethylammonium chloride)-cellulose nanocrystals supported Au nanoparticles for nonenzymatic glucose sensing. RSC Adv 6:6436–6442. https://doi.org/10.1039/c5ra23935d

    Article  CAS  Google Scholar 

  • Du LX, Wang JW, Zhang Y, Qi CS, Wolcott MP, Yu ZM (2017) A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. Bioresour Technol 238:254–262

    CAS  PubMed  Google Scholar 

  • Dunlop MJ, Acharya B, Bissessur R (2018) Isolation of nanocrystalline cellulose from tunicates. J Environ Chem Eng 6:4408–4412

    CAS  Google Scholar 

  • El Achaby M, El Miri N, Aboulkas A, Zahouily M, Bilal E, Barakat A, Solhy A (2017) Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol 96:340–352. https://doi.org/10.1016/j.ijbiomac.2016.12.040

    Article  CAS  PubMed  Google Scholar 

  • El Miri N, Abdelouandi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohyd Polym 129:156–167

    Google Scholar 

  • El Miri N et al (2016) Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohyd Polym 137:239–248

    Google Scholar 

  • El Miri N, Aziz F, Aboulkas A, El Bouchti M, Ben Youcef H, El Achaby M (2018) Effect of plasticizers on physicochemical properties of cellulose nanocrystals filled alginate bionanocomposite films. Adv Polym Technol. https://doi.org/10.1002/adv.22087

    Article  Google Scholar 

  • Esmaeili C, Abdi MM, Mathew AP, Jonoobi M, Oksman K, Rezayi M (2015) Synergy effect of nanocrystalline cellulose for the biosensing detection of glucose. Sensors 15:24681–24697. https://doi.org/10.3390/s151024681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995a) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355. https://doi.org/10.1002/pat.1995.220060514

    Article  CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995b) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367. https://doi.org/10.1021/ma00122a053

    Article  CAS  Google Scholar 

  • FDA US (2019) SCOGS (Select Committee on GRAS Substances). U.S. Food and Drug Administration. https://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS. Accessed 10/24 2019

  • Ferreira FV, Pinheiro IF, Gouveia RF, Thim GP, Lona LMF (2018) Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polym Compos 39:E9–E29

    CAS  Google Scholar 

  • Fortunati E, Luzi F, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crops Prod 67:439–447

    CAS  Google Scholar 

  • Fortunati E et al (2016) Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Ind Crops Prod 92:201–217

    CAS  Google Scholar 

  • Fumagalli M, Berriot J, de Gaudemaris B, Veyland A, Putaux J-L, Molina-Boisseau S, Heux L (2018) Rubber materials from elastomers and nanocellulose powders: filler dispersion and mechanical reinforcement. Soft Matter 14:2638–2648

    CAS  PubMed  Google Scholar 

  • Gestranius M, Stenius P, Kontturi E, Sjoblom J, Tammelin T (2017) Phase behaviour and droplet size of oil-in-water pickering emulsions stabilised with plant-derived nanocellulosic materials. Colloids Surf A 519:60–70. https://doi.org/10.1016/j.colsurfa.2016.04.025

    Article  CAS  Google Scholar 

  • Gong X, Wang Y, Chen L (2017) Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohydr Polym 169:295–303. https://doi.org/10.1016/j.carbpol.2017.04.024

    Article  CAS  PubMed  Google Scholar 

  • Grzabka-Zasadzinska A, Smulek W, Kaczorek E, Borysiak S (2018) Chitosan biocomposites with enzymatically produced nanocrystalline cellulose. Polym Compos 39:E448–E456

    CAS  Google Scholar 

  • Hedjazi S, Razavi SH (2018) A comparison of Canthaxanthine Pickering emulsions, stabilized with cellulose nanocrystals of different origins. Int J Biol Macromol 106:489–497. https://doi.org/10.1016/j.ijbiomac.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  • Hemmati F, Jafari SM, Kashaninejad M, Barani Motlagh M (2018) Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. Int J Biol Macromol 120:1216–1224. https://doi.org/10.1016/j.ijbiomac.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  • Hemmati F, Jafari SM, Taheri RA (2019) Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter. Int J Biol Macromol 137:374–381

    CAS  PubMed  Google Scholar 

  • Hu Z, Patten T, Pelton R, Cranston ED (2015) Synergistic stabilization of emulsions and emulsion gels with water-soluble polymers and cellulose nanocrystals. ACS Sustain Chem Eng 3:1023–1031. https://doi.org/10.1021/acssuschemeng.5b00194

    Article  CAS  Google Scholar 

  • Huang X et al (2017) Dilute alkali and hydrogen peroxide treatment of microwave liquefied rape straw residue for the extraction of cellulose nanocrystals. J Nanomater 2017:4049061/4049061–4049061/4049069. https://doi.org/10.1155/2017/4049061

    Article  CAS  Google Scholar 

  • Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir 26:17919–17925. https://doi.org/10.1021/la1028405

    Article  CAS  PubMed  Google Scholar 

  • Jin LQ, Li WG, Xu QH, Sun QC (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22:2443–2456

    CAS  Google Scholar 

  • Kaboorani A, Riedl B (2015) Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind Crops Prod 65:45–55

    CAS  Google Scholar 

  • Kalantari M, Du R, Ayranci C, Boluk Y (2018) Effects of interfacial interactions and interpenetrating brushes on the electrospinning of cellulose nanocrystals-polystyrene fibers. J Colloid Interface Sci 528:419–430

    CAS  PubMed  Google Scholar 

  • Kalashnikova I, Bizot H, Cathala B, Capron I (2011) New pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27:7471–7479

    CAS  PubMed  Google Scholar 

  • Kim H, Youn JR, Song YS (2018) Eco-friendly flame retardant nanocrystalline cellulose prepared via silylation. Nanotechnology 29:455702

    PubMed  Google Scholar 

  • Ko SW, Soriano JPE, Lee JY, Unnithan AR, Park CH, Kim CS (2018) Nature derived scaffolds for tissue engineering applications: design and fabrication of a composite scaffold incorporating chitosan-g-d, l-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf. Int J Biol Macromol 110:504–513

    CAS  PubMed  Google Scholar 

  • Koshani R, Madadlou A (2018) A viewpoint on the gastrointestinal fate of cellulose nanocrystals. Trends Food Sci Technol 71:268–273

    CAS  Google Scholar 

  • Koshani R, van de Ven TGM, Madadlou A (2018) Characterization of carboxylated cellulose nanocrytals isolated through catalyst-assisted H2O2 oxidation in a one-step procedure. J Agric Food Chem 66:7692–7700. https://doi.org/10.1021/acs.jafc.8b00080

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Rao KM, Han SS (2018) Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohyd Polym 193:228–238

    CAS  Google Scholar 

  • Lazko J et al (2016) Acid-free extraction of cellulose type I nanocrystals using Bronsted acid-type ionic liquids. Nanocomposites 2:65–75. https://doi.org/10.1080/20550324.2016.1199410

    Article  CAS  Google Scholar 

  • Lei WQ et al (2018) Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials. Carbohyd Polym 181:376–385

    CAS  Google Scholar 

  • Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng, C 29:1635–1642. https://doi.org/10.1016/j.msec.2009.01.006

    Article  CAS  Google Scholar 

  • Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:1010–1018. https://doi.org/10.1039/C5GC02576A

    Article  CAS  Google Scholar 

  • Li B, Zhang Y, Wu C, Guo B, Luo Z (2018a) Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly(acrylic acid). Carbohyd Polym 198:1–8

    Google Scholar 

  • Li L, Tao H, Wu B, Zhu G, Li K, Lin N (2018b) Triazole end-grafting on cellulose nanocrystals for water-redispersion improvement and reactive enhancement to nanocomposites. ACS Sustain Chem Eng 6:14888–14900. https://doi.org/10.1021/acssuschemeng.8b03407

    Article  CAS  Google Scholar 

  • Ling Z et al (2018) Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: micro and nano scale. Cellulose 26:861–876. https://doi.org/10.1007/s10570-018-2092-9

    Article  CAS  Google Scholar 

  • Liu YF, Wang HS, Yu G, Yu QX, Li B, Mu XD (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohyd Polym 110:415–422

    CAS  Google Scholar 

  • Liu C et al (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 151:716–724. https://doi.org/10.1016/j.carbpol.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Li X, Xie W, Deng H (2017) Extraction, isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste. Carbohyd Polym 173:353–359

    CAS  Google Scholar 

  • Liu F, Zheng J, Huang C-H, Tang C-H, Ou S-Y (2018a) Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals. Food Hydrocolloids 82:96–105

    CAS  Google Scholar 

  • Liu L, Hu Z, Sui X, Guo J, Cranston ED, Mao Z (2018b) Effect of counterion choice on the stability of cellulose nanocrystal pickering emulsions. Ind Eng Chem Res 57:7169–7180. https://doi.org/10.1021/acs.iecr.8b01001

    Article  CAS  Google Scholar 

  • Liu X et al (2018c) Hydrothermal synthesis of cellulose nanocrystal-grafted-acrylic acid aerogels with superabsorbent properties. Polymers 10:1168. https://doi.org/10.3390/polym10101168

    Article  CAS  PubMed Central  Google Scholar 

  • Lorenz M, Sattler S, Reza M, Bismarck A, Kontturi E (2017) Cellulose nanocrystals by acid vapor: towards more effortless isolation of cellulose nanocrystals. Faraday Discuss 202:315–330. https://doi.org/10.1039/C7FD00053G

    Article  CAS  PubMed  Google Scholar 

  • Lu TH, Li Q, Chen WS, Yu HP (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138

    CAS  Google Scholar 

  • Lu T et al (2017) Cellulose nanocrystals/polyacrylamide composites of high sensitivity and cycling performance to gauge humidity. ACS Appl Mater Interfaces 9:18231–18237. https://doi.org/10.1021/acsami.7b04590

    Article  CAS  PubMed  Google Scholar 

  • Luzi F et al (2019) Valorization and extraction of cellulose nanocrystals from North African grass: ampelodesmos mauritanicus (Diss). Carbohyd Polym 209:328–337

    CAS  Google Scholar 

  • Ma Q, Wang L (2016) Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sens Actuators, B 235:401–407. https://doi.org/10.1016/j.snb.2016.05.107

    Article  CAS  Google Scholar 

  • Malucelli LC, Lacerda LG, Dziedzic M, Carvalho MAD (2017) Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research. Rev Environ Sci Biol 16:131–145. https://doi.org/10.1007/s11157-017-9423-4

    Article  CAS  Google Scholar 

  • Mao J, Heck B, Reiter G, Laborie M-P (2015) Cellulose nanocrystals’ production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4)—mediated hydrolysis. Carbohydr Polym 117:443–451. https://doi.org/10.1016/j.carbpol.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Abushammala H, Pereira LB, Laborie M-P (2016) Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions. Carbohydr Polym 153:284–291. https://doi.org/10.1016/j.carbpol.2016.07.092

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Yu Y, Jiang Z, Zhang L (2016) One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23:1209–1219. https://doi.org/10.1007/s10570-016-0864-7

    Article  CAS  Google Scholar 

  • Mohamed MA, Salleh WNW, Jaafar J, Asri SEAM, Ismail AF (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5:29842–29849. https://doi.org/10.1039/c4ra17020b

    Article  CAS  Google Scholar 

  • Monika Dhar P, Katiyar V (2017) Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites. Int J Biol Macromol 104:827–836. https://doi.org/10.1016/j.ijbiomac.2017.06.039

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan KJ, Balaji AN, Ramanujam NR (2018) Isolation and characterization of cellulose nanocrystals from Saharan aloe vera cactus fibers. Int J Polym Anal Charact. https://doi.org/10.1080/1023666x.2018.1478366

    Article  Google Scholar 

  • Ngwabebhoh FA, Erdem A, Yildiz U (2018) A design optimization study on synthesized nanocrystalline cellulose, evaluation and surface modification as a potential biomaterial for prospective biomedical applications. Int J Biol Macromol 114:536–546

    CAS  PubMed  Google Scholar 

  • Ogundare SA, Moodley V, van Zyl WE (2017) Nanocrystalline cellulose isolated from discarded cigarette filters. Carbohyd Polym 175:273–281

    CAS  Google Scholar 

  • Orue A, Santamaria-Echart A, Eceiza A, Peña-Rodriguez C, Arbelaiz A (2017) Office waste paper as cellulose nanocrystal source. J Appl Polym Sci. https://doi.org/10.1002/app.45257

    Article  Google Scholar 

  • Oun AA, Rhim JW (2016) Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohyd Polym 150:187–200

    CAS  Google Scholar 

  • Oun AA, Rhim JW (2018) Isolation of oxidized nanocellulose from rice straw using the ammonium persulfate method. Cellulose 25:2143–2149

    CAS  Google Scholar 

  • Pang Z, Wang P, Dong C (2018) Ultrasonic pretreatment of cellulose in ionic liquid for efficient preparation of cellulose nanocrystals. Cellulose 25:7053–7064. https://doi.org/10.1007/s10570-018-2070-2

    Article  CAS  Google Scholar 

  • Peng B, Tang J, Wang P, Luo J, Xiao P, Lin Y, Tam KC (2018) Rheological properties of cellulose nanocrystal-polymeric systems. Cellulose 25:3229–3240. https://doi.org/10.1007/s10570-018-1775-6

    Article  CAS  Google Scholar 

  • Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER (2018) Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw. Appl Surf Sci 449:591–602. https://doi.org/10.1016/j.apsusc.2018.01.022

    Article  CAS  Google Scholar 

  • Peyre J, Paakkonen T, Reza M, Kontturi E (2015) Simultaneous preparation of cellulose nanocrystals and micron-sized porous colloidal particles of cellulose by TEMPO-mediated oxidation. Green Chem 17:808–811. https://doi.org/10.1039/C4GC02001D

    Article  CAS  Google Scholar 

  • Plappert SF et al (2018) Transparent, flexible, and strong 2,3-dialdehyde cellulose films with high oxygen barrier properties. Biomacromol 19:2969–2978. https://doi.org/10.1021/acs.biomac.8b00536

    Article  CAS  Google Scholar 

  • Poaty B, Vardanyan V, Wilczak L, Chauve G, Riedl B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77:813–820

    CAS  Google Scholar 

  • Prado KS, Spinace MAS (2018) Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int J Biol Macromol 122:410–416. https://doi.org/10.1016/j.ijbiomac.2018.10.187

    Article  CAS  PubMed  Google Scholar 

  • Qiao C, Chen G, Zhang J, Yao J (2016) Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocolloids 55:19–25. https://doi.org/10.1016/j.foodhyd.2015.11.005

    Article  CAS  Google Scholar 

  • Rahman NHA, Chieng BW, Ibrahim NA, Rahman NA (2017) Extraction and characterization of cellulose nanocrystals from tea leaf waste fibers. Polymers-Basel 9:588. https://doi.org/10.3390/polym9110588

    Article  CAS  PubMed Central  Google Scholar 

  • Rampazzo R, Alkan D, Gazzotti S, Ortenzi MA, Piva G, Piergiovanni L (2017) Cellulose nanocrystals from lignocellulosic raw materials, for oxygen barrier coatings on food packaging films. Packag Technol Sci 30:645–661. https://doi.org/10.1002/pts.2308

    Article  CAS  Google Scholar 

  • Reddy KO, Zhang JM, Zhang J, Rajulu AV (2014) Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. Carbohyd Polym 114:537–545

    CAS  Google Scholar 

  • Roberts R, Gettz K, Stebounova LV, Shatkin JA, Peters T, Foster EJ (2019) Collection of airborne ultrafine cellulose nanocrystals by impinger with an efficiency mimicking deposition in the human respiratory system. J Occup Environ Hyg 16:141–150. https://doi.org/10.1080/15459624.2018.1540876

    Article  CAS  PubMed  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677. https://doi.org/10.1021/bm034519+

    Article  CAS  Google Scholar 

  • Rovera C, Ghaani M, Santo N, Trabattoni S, Olsson RT, Romano D, Farris S (2018) Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals. ACS Sustain Chem Eng 6:7725–7734. https://doi.org/10.1021/acssuschemeng.8b00600

    Article  CAS  Google Scholar 

  • Sadasivuni KK, Ponnamma D, Ko H-U, Kim HC, Zhai L, Kim J (2016) Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites. Sens Actuators, B 233:633–638. https://doi.org/10.1016/j.snb.2016.04.134

    Article  CAS  Google Scholar 

  • Saha D, Bhattacharya S (2010) Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol 47:587–597. https://doi.org/10.1007/s13197-010-0162-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salari M, Sowti Khiabani M, Rezaei Mokarram R, Ghanbarzadeh B, Samadi Kafil H (2018) Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int J Biol Macromol 122:280–288. https://doi.org/10.1016/j.ijbiomac.2018.10.136

    Article  CAS  PubMed  Google Scholar 

  • Shaheen TI, Fouda A (2018) Green approach for one-pot synthesis of silver nanorod using cellulose nanocrystal and their cytotoxicity and antibacterial assessment. Int J Biol Macromol 106:784–792

    CAS  PubMed  Google Scholar 

  • Shang Q, Liu C, Hu Y, Jia P, Hu L, Zhou Y (2018) Bio-inspired hydrophobic modification of cellulose nanocrystals with castor oil. Carbohyd Polym 191:168–175

    CAS  Google Scholar 

  • Singhsa P, Narain R, Manuspiya H (2018) Bacterial cellulose nanocrystals (BCNC) preparation and characterization from three bacterial cellulose sources and development of functionalized BCNCs as nucleic acid delivery systems. ACS Applied Nano Mater 1:209–221

    CAS  Google Scholar 

  • Siqueira GA, Dias IKR, Arantes V (2019) Exploring the action of endoglucanases on bleached eucalyptus kraft pulp as potential catalyst for isolation of cellulose nanocrystals. Int J Biol Macromol 133:1249–1259

    CAS  PubMed  Google Scholar 

  • Sirvio JA, Kolehmainen A, Visanko M, Liimatainen H, Niinimaki J, Hormi OEO (2014) Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. ACS Appl Mater Interfaces 6:14384–14390

    CAS  PubMed  Google Scholar 

  • Song M, Yu H, Gu J, Ye S, Zhou Y (2018a) Chemical cross-linked polyvinyl alcohol/cellulose nanocrystal composite films with high structural stability by spraying Fenton reagent as initiator. Int J Biol Macromol 113:171–178

    CAS  PubMed  Google Scholar 

  • Song W, Lee J-K, Gong MS, Heo K, Chung W-J, Lee BY (2018b) Cellulose nanocrystal-based colored thin films for colorimetric detection of aldehyde gases. ACS Appl Mater Interfaces 10:10353–10361. https://doi.org/10.1021/acsami.7b19738

    Article  CAS  PubMed  Google Scholar 

  • Souza VC, Niehues E, Quadri MGN (2016) Development and characterization of chitosan bionanocomposites containing oxidized cellulose nanocrystals. J Appl Polym Sci. https://doi.org/10.1002/app.43033

    Google Scholar 

  • Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591. https://doi.org/10.1016/j.biombioe.2015.08.016

    Article  CAS  Google Scholar 

  • Tang LR, Huang B, Yang NT, Li T, Lu QL, Lin WY, Chen XR (2013) Organic solvent-free and efficient manufacture of functionalized cellulose nanocrystals via one-pot tandem reactions. Green Chem 15:2369–2373

    CAS  Google Scholar 

  • Tang LR, Li T, Zhuang SY, Lu QL, Li PF, Huang B (2016) Synthesis of pH-sensitive fluorescein grafted cellulose nanocrystals with an amino acid spacer. ACS Sustain Chem Eng 4:4842–4849. https://doi.org/10.1021/acssuschemeng.6b01124

    Article  CAS  Google Scholar 

  • Tang Q, Pan D, Sun Y, Cao J, Guo Y (2017) Preparation, characterization and antimicrobial activity of sodium alginate nanobiocomposite films incorporated with ε-polylysine and cellulose nanocrystals. J Food Process Preserv 41:e13120

    Google Scholar 

  • Tang CX, Spinney S, Shi ZQ, Tang JT, Peng BL, Luo JH, Tam KC (2018a) Amphiphilic cellulose nanocrystals for enhanced pickering emulsion stabilization. Langmuir 34:12897–12905

    CAS  PubMed  Google Scholar 

  • Tang LR, Lin FC, Li T, Cai ZH, Hong BY, Huang B (2018b) Design and synthesis of functionalized cellulose nanocrystals-based drug conjugates for colon-targeted drug delivery. Cellulose 25:4525–4536

    CAS  Google Scholar 

  • Tang Y, Zhang X, Zhao R, Guo D, Zhang J (2018c) Preparation and properties of chitosan/guar gum/nanocrystalline cellulose nanocomposite films. Carbohydr Polym 197:128–136

    CAS  PubMed  Google Scholar 

  • Tavakolian M, Okshevsky M, van de Ven TGM, Tufenkji N (2018) Developing antibacterial nanocrystalline cellulose using natural antibacterial agents. ACS Appl Mater Interfaces 10:33827–33838. https://doi.org/10.1021/acsami.8b08770

    Article  CAS  PubMed  Google Scholar 

  • Toncheva A, Khelifa F, Paint Y, Voue M, Lambert P, Dubois P, Raquez J-M (2018) Fast IR-actuated shape-memory polymers using in situ silver nanoparticle-grafted cellulose nanocrystals. ACS Appl Mater Interfaces 10:29933–29942

    CAS  PubMed  Google Scholar 

  • Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press, Liverpool

    Google Scholar 

  • Wu H et al (2018a) Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydr Polym 180:304–313. https://doi.org/10.1016/j.carbpol.2017.10.022

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Song R, Xu Z, Jing Y, Dai H, Fang G (2018b) Fluorescent cellulose nanocrystals with responsiveness to solvent polarity and ionic strength. Sens Actuators, B 275:490–498. https://doi.org/10.1016/j.snb.2018.07.085

    Article  CAS  Google Scholar 

  • Xiao Y, Liu Y, Wang X, Li M, Lei H, Xu H (2019) Cellulose nanocrystals prepared from wheat bran: characterization and cytotoxicity assessment. Int J Biol Macromol 140:225–233. https://doi.org/10.1016/j.ijbiomac.2019.08.160

    Article  CAS  PubMed  Google Scholar 

  • Yarbrough JM et al (2017) Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11:3101–3109

    CAS  PubMed  Google Scholar 

  • Ye HM, Wang CS, Zhang ZZ, Yao SF (2018a) Effect of cellulose nanocrystals on the crystallization behavior and enzymatic degradation of poly(butylene adipate). Carbohyd Polym 189:99–106

    CAS  Google Scholar 

  • Ye SN, Yu HY, Wang DC, Zhu JY, Gu JP (2018b) Green acid-free one-step hydrothermal ammonium persulfate oxidation of viscose fiber wastes to obtain carboxylated spherical cellulose nanocrystals for oil/water Pickering emulsion. Cellulose 25:5139–5155

    CAS  Google Scholar 

  • Yin Y, Ma J, Tian X, Jiang X, Wang H, Gao W (2018) Cellulose nanocrystals functionalized with amino-silane and epoxy-poly(ethylene glycol) for reinforcement and flexibilization of poly(lactic acid): material preparation and compatibility mechanism. Cellulose 25:6447–6463. https://doi.org/10.1007/s10570-018-2033-7

    Article  CAS  Google Scholar 

  • Yousefi N, Wong KKW, Hosseinidoust Z, Soerensen HO, Bruns S, Zheng Y, Tufenkji N (2018) Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants. Nanoscale 10:7171–7184

    CAS  PubMed  Google Scholar 

  • Yu H-Y, Yang X-Y, Lu F-F, Chen G-Y, Yao J-M (2016) Fabrication of multifunctional cellulose nanocrystals/poly(lactic acid) nanocomposites with silver nanoparticles by spraying method. Carbohyd Polym 140:209–219

    CAS  Google Scholar 

  • Yu HY, Zhang H, Song ML, Zhou Y, Yao JM, Ni QQ (2017) From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl Mater Interfaces 9:43920–43938

    CAS  PubMed  Google Scholar 

  • Yu Z, Sun L, Wang W, Zeng W, Mustapha A, Lin M (2018) Soy protein-based films incorporated with cellulose nanocrystals and pine needle extract for active packaging. Ind Crops Prod 112:412–419. https://doi.org/10.1016/j.indcrop.2017.12.031

    Article  CAS  Google Scholar 

  • Yuan Z, Wen Y (2018) Enhancement of hydrophobicity of nanofibrillated cellulose through grafting of alkyl ketene dimer. Cellulose (Dordrecht, Netherlands):Ahead of Print

    CAS  Google Scholar 

  • Yuan W, Wang C, Lei S, Chen J, Lei S, Li Z (2018) Ultraviolet light-, temperature- and pH-responsive fluorescent sensors based on cellulose nanocrystals. Polym Chem 9:3098–3107. https://doi.org/10.1039/c8py00613j

    Article  CAS  Google Scholar 

  • Zhang K, Sun P, Liu H, Shang S, Song J, Wang D (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydr Polym 138:237–243. https://doi.org/10.1016/j.carbpol.2015.11.038

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Karimkhani V, Makowski B, Samaranayake G, Rowan S (2017) Nanoemulsions and nanolatexes stabilized by hydrophobically functionalized cellulose nanocrystals. Macromolecules 16:6032–6042. https://doi.org/10.1021/acs.macromol.7b00982

    Article  CAS  Google Scholar 

  • Zhang Y-J, Ma X-Z, Gan L, Xia T, Shen J, Huang J (2018a) Fabrication of fluorescent cellulose nanocrystal via controllable chemical modification towards selective and quantitative detection of Cu(II) ion. Cellulose 25:5831–5842. https://doi.org/10.1007/s10570-018-1995-9

    Article  CAS  Google Scholar 

  • Zhang Y, Liu Y, Li R, Ren X, Huang T-S (2018b) Preparation and characterization of antimicrobial films based on nanocrystalline cellulose. J Appl Polym Sci. https://doi.org/10.1002/app.47101

    Article  Google Scholar 

  • Zhao YD, Zhang YJ, Lindstrom ME, Li JB (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohyd Polym 117:286–296

    CAS  Google Scholar 

  • Zhao G, Wang F, Lang X, He B, Li J, Li X (2017) Facile one-pot fabrication of cellulose nanocrystals and enzymatic synthesis of its esterified derivative in mixed ionic liquids. RSC Adv 7:27017–27023. https://doi.org/10.1039/C7RA02570J

    Article  CAS  Google Scholar 

  • Zhou L et al (2018) One-pot preparation of carboxylated cellulose nanocrystals and their liquid crystalline behaviors. ACS Sustain Chem Eng 6:12403–12410. https://doi.org/10.1021/acssuschemeng.8b02926

    Article  CAS  Google Scholar 

  • Zulnazri Z, Anjana F, Roesyadi A (2017) Temperature effect of crystalinity in cellulose nanocrystal from oil palm empty fruit bunch (OPEFB) using sonication-hydrothermal methods. J Pure Appl Chem Res 6:14–21. https://doi.org/10.21776/ub.jpacr.2017.006.01.296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (250374), Natural Sciences and Engineering Research Council of Canada Discovery Launch Supplement (250531), Fonds de Recherche du Québec - Nature et Technologies (250466), and McGill University Academic Startup Grant (130209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinghai Liu, Chunyu Chang or Yixiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Liu, X., Chang, C. et al. Recent developments and prospective food-related applications of cellulose nanocrystals: a review. Cellulose 27, 2991–3011 (2020). https://doi.org/10.1007/s10570-020-02984-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-02984-3

Keywords

Navigation