Skip to main content
Log in

Synthesis of cellulose–silica nanocomposites by in situ biomineralization during fermentation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacteria cellulose (BC) generated by Acetobacter xylinum is made up of three-dimensional network of ribbon-shaped nanofibers and serves as a promising matrix for composite materials. Lately different types of nanoparticles have been adopted to modify BC via chemical reactions or physical adsorption, which usually require two steps or more and could not modify BC homogeneously. In this study we provide a one-step in situ biomineralization method during microbial fermentation to produce BC–silica nanocomposites with control over silica content. By statically culturing Acetobacter xylinum in the medium containing various amounts of sodium silicate, the slightly acidic culture environment due to consumption of glucose during fermentation could transfer sodium silicate to amorphous silica deposition that is evenly distributed on BC. The BC–silica nanocomposites obtained by this method possess superior mechanical properties such as high tensile strength and Young’s modulus, which are potential candidates for future biomedical applications. With the analysis of elemental abundance and chemical structures, we propose the synthetic mechanism of in situ production of BC–silica nanocomposites. This method is an efficient, controllable and environmental-friendly method to synthesize BC–silica nanocomposites, which also provides insights to other BC-inorganic hybrid composites and microbial modifications by microbial synthetic systems.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrade FK, Moreira SMG, Domingues L, Gama FMP (2010) Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD. J Biomed Mater Res Part A 92A(1):9–17

    Article  CAS  Google Scholar 

  • Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17(10):409–421

    Article  CAS  PubMed  Google Scholar 

  • Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149

    Article  PubMed  Google Scholar 

  • Barud HS, Assunção RMN, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2008) Bacterial cellulose–silica organic–inorganic hybrids. J Sol-Gel Sci Technol 46(3):363–367

    Article  CAS  Google Scholar 

  • Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23(1):57–91

    Article  CAS  Google Scholar 

  • Chen Y, Feng Y, Deveaux JG, Masoud MA, Chandra FS, Chen H, Zhang D, Feng L (2019) Biomineralization forming process and bio-inspired nanomaterials for biomedical application: a review. Minerals 9(2):68

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Li J, Bao Z, Hu M, Nian R, Feng D, An D, Li X, Xian M, Zhang H (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun 10(1):437

    Article  PubMed  PubMed Central  Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646

    Article  CAS  PubMed  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270

    Article  CAS  Google Scholar 

  • Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19(12):1589–1593

    Article  CAS  Google Scholar 

  • Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindström T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517

    Article  CAS  Google Scholar 

  • Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci 94(17):9091

    Article  CAS  PubMed  Google Scholar 

  • Litschauer M, Neouze M-A, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2011) Silica modified cellulosic aerogels. Cellulose 18(1):143–149

    Article  CAS  Google Scholar 

  • Lustri W, Barud H, Barud H, Peres M, Gutierrez J, Tercjak A, Oliveira Junior O, Ribeiro S (2015) Microbial cellulose—biosynthesis mechanisms and medical applications In: Cellulose—fundamental aspects and current trends. Matheus Poletto and Heitor Luiz Ornaghi Junior, IntechOpen. https://doi.org/10.5772/61797

    Google Scholar 

  • Mohammadkazemi F, Faria M, Cordeiro N (2016) In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: one-step process. Mater Sci Eng C 65:393–399

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687

    Article  CAS  Google Scholar 

  • Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584

    Article  CAS  PubMed  Google Scholar 

  • Pértile R, Moreira S, Andrade F, Domingues L, Gama M (2012) Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog 28(2):526–532

    Article  PubMed  Google Scholar 

  • Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106

    Article  CAS  PubMed  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F, Zhang T (2014) Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process. RSC Adv 4(57):30453–30461

    Article  CAS  Google Scholar 

  • Sheykhnazari S, Tabarsa T, Ashori A, Ghanbari A (2016) Bacterial cellulose composites loaded with SiO2 nanoparticles: dynamic-mechanical and thermal properties. Int J Biol Macromol 93:672–677

    Article  CAS  PubMed  Google Scholar 

  • Stumpf TR, Yang X, Zhang J, Cao X (2018) In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng C 82:372–383

    Article  CAS  Google Scholar 

  • Sun B, Zi Q, Chen C, Zhang H, Gu Y, Liang G, Sun DP (2018) Study of specific metabolic pattern of Acetobacter xylinum NUST4.2 and bacterial cellulose production improvement. Cellul Chem Technol 52(9–10):795–801

    CAS  Google Scholar 

  • Wei L, McDonald AG, Stark NM (2015) Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide. Biomacromolecules 16(3):1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Xie J, Deng Y, Bian Y, Hong F (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohyd Polym 87(4):2482–2487

    Article  CAS  Google Scholar 

  • Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2007) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120

    Article  Google Scholar 

  • Yin N, Chen S-y, Ouyang Y, Tang L, Yang J-x, Wang H-p (2011) Biomimetic mineralization synthesis of hydroxyapatite bacterial cellulose nanocomposites. Prog Nat Sci Mater Int 21(6):472–477

    Article  Google Scholar 

  • Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20(7):1152–1160

    Article  CAS  Google Scholar 

  • Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34(7):483

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31(1):43–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (Changzhou University), National Natural Science Foundation of China (Grants 51873087, 51803092 and 81801839), National Natural Science Foundation of China Jiangsu Province (BK20180490), the Fundamental Research Funds for the Central Universities (Grants 30920130121001 and 30919011221), China Postdoctoral Science Foundation (2018M632307, 2018M632309), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhang or Dongping Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Sun, B., Wang, T. et al. Synthesis of cellulose–silica nanocomposites by in situ biomineralization during fermentation. Cellulose 27, 703–712 (2020). https://doi.org/10.1007/s10570-019-02824-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02824-z

Keywords

Navigation