Skip to main content
Log in

Overproduction of fungal endo-β-1,4-glucanase leads to characteristic lignocellulose modification for considerably enhanced biomass enzymatic saccharification and bioethanol production in transgenic rice straw

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Genetic modification of plant cell walls has been considered to reduce lignocellulose recalcitrance for enhanced biomass enzymatic saccharification and biofuel production in bioenergy crops. Although endo-β-1,4-glucanase (EG II) secreted by fungi has been broadly applied for enzymatic hydrolysis of cellulose, it remains to explore its role in cellulose modification when the EG II gene is overexpressed in plant. In this study, we selected transgenic rice plants that overproduced Trichoderma reesei EG II enzyme specifically deposited into plant cell walls, and then examined much higher enzymatic activities by fourfold to fivefold in transgenic young seedlings than those of wild type in vitro. Notably, despite slightly altered cell wall compositions and polymer interlinkages relative to the wild type, the transgenic mature rice straw exhibited significantly reduced cellulose DP and CrI values and hemicellulosic Xyl/Ara ratio, leading to much increased biomass porosity. These should play integrated impact for enhanced biomass enzymatic saccharification and bioethanol production even under mild alkali pretreatment. Therefore, the results suggested that the EG II deposition should have enzymatic activity specific for minor-modification of cellulose microfibrils in transgenic rice plants. It has also provided a potential strategy for mild cell wall modification and optimal biomass process in rice and other bioenergy crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EG II:

Endo-β-1,4-glucanase

CrI:

Cellulose crystallinity index

DP:

Degree of polymerization

Ara:

Arabinose

Xyl:

Xylose

SEM:

Scanning electron microscopy

FTIR:

Fourier transforms infrared

References

  • Arai-Sanoh Y, Ida M, Zhao R et al (2011) Genotypic variations in non-structural carbohydrate and cell-wall components of the stem in rice, sorghum, and sugar vane. Biosci Biotechnol Biochem 75:1104–1112

    Article  CAS  Google Scholar 

  • Baba Y, Ishida Y, Oda M et al (2001) Decomposition of (1–3,1–4)-β-glucan and expression of the (1–3,1–4)-β-glucanase gene in rice stems during ripening. Plant Prod Sci 4:230–234

    Article  CAS  Google Scholar 

  • Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Cao S, Aita GM (2013) Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse. Bioresour Technol 131:357–364

    Article  CAS  Google Scholar 

  • Chou HL, Dai Z, Hsieh CW, Ku MSB (2011) High level expression of Acidothermus cellulolyticus β-1,4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid. Biotechnol Biofuels 4:58

    Article  CAS  Google Scholar 

  • Chundawat SPS, Donohoe BS, da Costa Sousa L et al (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4:973

    Article  CAS  Google Scholar 

  • Ciolacu D, Gorgieva S, Tampu D, Kokol V (2011) Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose. Cellulose 18:1527–1541

    Article  CAS  Google Scholar 

  • Dai Z, Hooker BS, Anderson DB, Thomas SR (2000) Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco: biochemical characteristics and physiological effects. Transgenic Res 9:43–54

    Article  CAS  Google Scholar 

  • Dai Z, Hooker BS, Quesenberry RD, Thomas SR (2005) Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Transgenic Res 14:627–643

    Article  CAS  Google Scholar 

  • Divne C, Ståhlberg J, Reinikainen T et al (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524–528

    Article  CAS  Google Scholar 

  • Fan Z, Yuan L (2010) Production of multifunctional chimaeric enzymes in plants: a promising approach for degrading plant cell wall from within. Plant Biotechnol J 8:308–315

    Article  CAS  Google Scholar 

  • Fan C, Feng S, Huang J et al (2017) AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnol Biofuels 10:221

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Ge X, Burner DM, Xu J et al (2011) Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Biotechnol J 6:66–73

    Article  CAS  Google Scholar 

  • Helle SS, Duff SJ, Cooper DG (1993) Effect of surfactants on cellulose hydrolysis. Biotechnol Bioeng 42:611–617

    Article  CAS  Google Scholar 

  • Henrissat B (1994) Cellulases and their interaction with cellulose. Cellulose 1:169–196

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S, Johnson DK, Adney WS (2007) Biomass recalcitrance. Science 454:804–807

    Article  Google Scholar 

  • Hood EE, Love R, Lane J et al (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5:709–719

    Article  CAS  Google Scholar 

  • Huang Y, Wei X, Zhou S et al (2015) Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresour Technol 181:224–230

    Article  CAS  Google Scholar 

  • Jin W, Chen L, Hu M et al (2016) Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Appl Energy 175:82–90

    Article  CAS  Google Scholar 

  • Jung S, Kim S, Bae H et al (2010) Expression of thermostable bacterial β-glucosidase (BglB) in transgenic tobacco plants. Bioresour Technol 101:7144–7150

    Article  CAS  Google Scholar 

  • Kim JE, Lee J-W (2019) Microstructural changes in the cell wall and enzyme adsorption properties of lignocellulosic biomass subjected to thermochemical pretreatment. Cellulose 5:1–14

    CAS  Google Scholar 

  • Kim MH, Lee SB, Ryu DDY, Reese ET (1982) Surface deactivation of cellulase and its prevention. Enzyme Microb Technol 4:99–103

    Article  CAS  Google Scholar 

  • Kim I, Lee B, Park J-Y et al (2014) Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydr Polym 99:563–567

    Article  CAS  Google Scholar 

  • Klose H, Günl M, Usadel B et al (2013) Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development. Biotechnol Biofuels 6:53

    Article  CAS  Google Scholar 

  • Klose H, Günl M, Usadel B et al (2015) Cell wall modification in tobacco by differential targeting of recombinant endoglucanase from Trichoderma reesei. BMC Plant Biol 15:54

    Article  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  Google Scholar 

  • Lee WC, Kuan WC (2015) Miscanthus as cellulosic biomass for bioethanol production. Biotechnol J 10:840–854

    Article  CAS  Google Scholar 

  • Li F, Ren S, Zhang W et al (2013a) Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresour Technol 130:629–637

    Article  CAS  Google Scholar 

  • Li HQ, Li CL, Sang T, Xu J (2013b) Pretreatment on Miscanthus lutarioriparious by liquid hot water for efficient ethanol production. Biotechnol Biofuels 6:1–10

    Article  CAS  Google Scholar 

  • Li M, Feng S, Wu L et al (2014a) Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Bioresour Technol 167:14–23

    Article  CAS  Google Scholar 

  • Li M, Si S, Hao B et al (2014b) Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresour Technol 169:447–454

    Article  CAS  Google Scholar 

  • Li F, Zhang M, Guo K et al (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J 13:514–525

    Article  CAS  Google Scholar 

  • Li F, Xie G, Huang J et al (2017) OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnol J 15:1093–1104

    Article  CAS  Google Scholar 

  • Li Y, Liu P, Huang J et al (2018a) Mild chemical pretreatments are sufficient for bioethanol production in transgenic rice straws overproducing glucosidase. Green Chem 20:2047–2056

    Article  CAS  Google Scholar 

  • Li Y, Zhuo J, Liu P et al (2018b) Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice. Carbohydr Polym 192:273–281

    Article  CAS  Google Scholar 

  • Liu TY, Ma Y, Yu SF et al (2011) The effect of ball milling treatment on structure and porosity of maize starch granule. Innov Food Sci Emerg Technol 12:586–593

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Lynd LR, Laser MS, Bransby D et al (2008) How biotech can Transformation biofuels. Nat Biotechnol 26:169–172

    Article  CAS  Google Scholar 

  • Mei C, Park SH, Sabzikar R et al (2009) Green tissue-specific production of a microbial endo-cellulase in maize (Zea mays L.) endoplasmic-reticulum and mitochondria converts cellulose into fermentable sugars. J Chem Technol Biotechnol 84:689–695

    Article  CAS  Google Scholar 

  • Oraby H, Venkatesh B, Dale B et al (2007) Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res 16:739–749

    Article  CAS  Google Scholar 

  • Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:305–312

    Article  CAS  Google Scholar 

  • Pei Y, Li Y, Zhang Y et al (2016) G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Bioresour Technol 203:325–333

    Article  CAS  Google Scholar 

  • Peng L, Hocart CH, Redmond JW, Williamson RE (2000) Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta 211:406–414

    Article  CAS  Google Scholar 

  • Peng L, Kawagoe Y, Hogan P, Delmer D (2002) Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science 295:147–150

    Article  CAS  Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology 158:58–68

    Article  CAS  Google Scholar 

  • Rosgaard L, Pedersen S, Langston J et al (2007) Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 23:1270–1276

    Article  CAS  Google Scholar 

  • Sheikh MMI, Kim CH, Park HJ et al (2013) Effect of torrefaction for the pretreatment of rice straw for ethanol production. J Sci Food Agric 93:3198–3204

    Article  CAS  Google Scholar 

  • Sun D, Alam A, Tu Y et al (2017) Steam-exploded biomass saccharification is predominately affected by lignocellulose porosity and largely enhanced by Tween-80 in Miscanthus. Bioresour Technol 239:74–81

    Article  CAS  Google Scholar 

  • Tanaka M, Ikesaka M, Matsuno R, Converse AO (1988) Effect of pore size in substrate and diffusion of enzyme on hydrolysis of cellulosic materials with cellulases. Biotechnol Bioeng 32:698–706

    Article  CAS  Google Scholar 

  • Taylor LE, Dai Z, Decker SR et al (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 26:413–424

    Article  CAS  Google Scholar 

  • Thomsen ST, Londoño JEG, Schmidt JE, Kádár Z (2015) Comparison of different pretreatment strategies for ethanol production of West African biomass. Appl Biochem Biotechnol 175:2589–2601

    Article  CAS  Google Scholar 

  • Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    Article  CAS  Google Scholar 

  • Wang Y, Fan C, Hu H et al (2016) Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 34:997–1017

    Article  CAS  Google Scholar 

  • Wu Z, Zhang M, Wang L et al (2013) Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Biotechnol Biofuels 6:183

    Article  Google Scholar 

  • Xie G, Peng L (2011) Genetic engineering of energy crops: a strategy for biofuel production in China. J Integr Plant Biol 53:143–150

    Article  Google Scholar 

  • Xu N, Zhang W, Ren S et al (2012) Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol Biofuels 5:58

    Article  CAS  Google Scholar 

  • Zahoor TuY, Wang L et al (2017) Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions. Bioresour Technol 243:319–326

    Article  CAS  Google Scholar 

  • Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  Google Scholar 

  • Zhang W, Yi Z, Huang J et al (2013) Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresour Technol 130:30–37

    Article  CAS  Google Scholar 

  • Zhong C, Lau MW, Balan V et al (2009) Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl Microbiol Biotechnol 84:667–676

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part supported by Grants from the National Science Foundation of China (31670296; 31571721), the National 111 Project (B08032), the National Transgenic Project (2009ZX08009-119B) and the Youth Fund of Jiangsu Province (BK20140417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangcai Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 1302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Sun, H., Fan, C. et al. Overproduction of fungal endo-β-1,4-glucanase leads to characteristic lignocellulose modification for considerably enhanced biomass enzymatic saccharification and bioethanol production in transgenic rice straw. Cellulose 26, 8249–8261 (2019). https://doi.org/10.1007/s10570-019-02500-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02500-2

Keywords

Navigation