Skip to main content
Log in

Structural and functional modification of cellulose nanofibrils using graft copolymerization with glycidyl methacrylate by Fe2+–thiourea dioxide–H2O2 redox system

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

To graft epoxy and ester functional groups onto cellulose nanofibrils (CNFs) and to overcome their poor hydrophobicity, we studied the modification of CNFs using graft copolymerization with glycidyl methacrylate (GMA) by a Fe2+–thiourea dioxide–H2O2 initiator system (Fe2+–TD–H2O2) in aqueous solution. The synthesized poly (GMA)-grafted CNF (CNF-g-PGMA) was characterized by FTIR, AFM, XRD, water contact angle, and TGA. GMA was successfully grafted onto the CNFs by Fe2+–TD–H2O2, the epoxy groups and ester groups of GMA were clearly present and intact in the CNF-g-PGMA, and TD is an important component of the initiator system under relatively mild graft conditions. CNF-g-PGMA may be an important intermediate because of its epoxy and ester functional groups. The main nanostructure of the CNFs was retained after graft copolymerization, and there were no obvious effects of graft copolymerization on the crystalline structure of the CNF backbone, although the crystalline index slightly decreased with the increased percentage of grafting. Graft copolymerization significantly modifies the CNF hydrophobicity. This strategy could extend the applications of CNFs into many areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgments

The authors are grateful for the support of the National Natural Science Foundation of China (Grant No. 31070524), and the Major State Basic Research Development Program of China (Grant No. 2010CB732205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huamin Zhai or Monica Ek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Li, D., Lennholm, H. et al. Structural and functional modification of cellulose nanofibrils using graft copolymerization with glycidyl methacrylate by Fe2+–thiourea dioxide–H2O2 redox system. Cellulose 26, 4853–4864 (2019). https://doi.org/10.1007/s10570-019-02411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02411-2

Keywords

Navigation