Skip to main content
Log in

Dispersion, stability and size measurements for cellulose nanocrystals by static multiple light scattering

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Static multiple light scattering (SMLS) is used to provide qualitative information on cellulose nanocrystal (CNC) suspensions as a function of the methods used to disperse the dry CNCs and, in some cases, to estimate the equivalent size for primary particles and their aggregates. The methods were validated by measuring the mean diameter of several sizes and concentrations of silica particles which are approximately monodisperse and spherical, both of which significantly simplify the analysis of SMLS data. The results indicate that uncertainty in the silica density contributes to differences between the estimated SMLS diameters and those determined by dynamic light scattering. Suspension stability, sedimentation kinetics, and particle size as a function of dispersion method were evaluated for CNC suspensions by measuring the intensity profiles of light transmitted through the sample as a function of time, and applying sedimentation or light scattering theories. The results demonstrate that SMLS is a useful method for monitoring CNC dispersion for samples that are too concentrated to study by DLS. The sedimentation analysis provides qualitative information on the presence and size (equivalent diameter) of CNC aggregates/agglomerates and evidence for formation of a stable phase that forms during concurrent sedimentation and dispersion of CNC aggregates for unsonicated suspensions and is hypothesized to be a gel phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Batchelor GK (1982) Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory. J Fluid Mech 119:379–408

    Article  Google Scholar 

  • Batchelor GK, Wen C-S (1982) Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results. J Fluid Mech 124:495–528

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromol 12:167–172

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromol 13:1486–1494

    Article  CAS  Google Scholar 

  • Brenner H (1974) Rheology of a dilute suspension of axisymmetric Brownian particles. Int Multiph Flow 1:195–341

    Article  Google Scholar 

  • Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114

    Article  CAS  PubMed  Google Scholar 

  • Buscall R, White LR (1987) The consolidation of concentrated suspensions. Part 1. The theory of sedimentation. J Chem Soc, Faraday Trans 1(83):873–891

    Article  Google Scholar 

  • Buscall R, Mills PD, Goodwin JW, Larson DW (1988) Scaling behaviour of the rheology of aggregate networks formed from colloidal particles. J Chem Soc, Faraday Trans 1(84):4249–4260

    Article  Google Scholar 

  • Cherhal F, Cousin F, Capron I (2015) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31:5596–5602

    Article  CAS  PubMed  Google Scholar 

  • Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409

    Article  CAS  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Einstein A (1956) A new determination of molecular dimensions. In: Fürth R (ed) Investigations on the theory of the Brownian movement. Dover, New York

    Google Scholar 

  • Goscianska J, Olejnik A, Nowak I, Marciniak M, Pietrzak R (2016) Stability analysis of functionalized mesoporous carbon materials in aqueous solution. Chem Eng J 290:209–219

    Article  CAS  Google Scholar 

  • Hansen S (2004) Translational friction coefficients for cylinders of arbitrary axial ratios estimated by Monte Carlo simulation. J Chem Phys 121:91111–99115

    Article  CAS  Google Scholar 

  • Haywood AD, Weigandt KM, Saha P, Noor M, Green MJ, Davis VA (2017) New insights into the flow and microstructural relaxation behavior of biphasic cellulose nanocrystal disperisons from RheoSANS. Soft Matter 13:8451–8462

    Article  CAS  PubMed  Google Scholar 

  • Jakubek ZJ, Chen M, Couillard M, Leng T, Liu L, Zou S, Baxa U, Clogston JD, Hamad W, Johnston LJ (2018) Characterization challenges for a cellulose nanocrystal reference material: dispersion and particle size distributions. J Nanopart Res 20:98

    Article  CAS  Google Scholar 

  • Kangas H, Lahtinen P, Sneck A, Saariaho A-M, Laitenen O, Hellen E (2014) Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nord Pulp Paper J 29:129–143

    Article  CAS  Google Scholar 

  • Kimoto S, Dick WD, Hunt B, Szymanski WW, McMurry PH, Roberts DL, Pui DYH (2017) Characterization of nanosized silica size standards. Aerosol Sci Technol 51:936–945

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, Oxford

    Google Scholar 

  • Lee SY, Widiyastuti W, Tajima N, Iskandar F, Okuyama K (2009) Measurement of the effective density of both spherical aggregated and ordered porous aerosol particles using mobility- and mass-analyzers. Aerosol Sci Technol 43:136–144

    Article  CAS  Google Scholar 

  • Mengual O, Cayré I, Puech K, Snabre P (1999) TURBISCAN MA 2000: multiple Light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta 50:445–456

    Article  CAS  PubMed  Google Scholar 

  • Mills P, Snabre P (1994) Settling of a suspension of hard spheres. Europhys Lett 25:651–656

    Article  Google Scholar 

  • Nordenstrom M, Fall A, Nystrom G, Wagberg L (2017) Formation of colloidal nanocellulose glasses and gels. Langmuir 33:9772–9780

    Article  CAS  PubMed  Google Scholar 

  • Oguzlu H, Danumah C, Boluk Y (2016) The role of dilute and semi-dilute cellulose nanocrystal (CNC) suspensions on the rheology of carboxymethyl cellulose (CMC) solutions. Can J Chem Eng 94:1841–1847

    Article  CAS  Google Scholar 

  • Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56

    Article  CAS  Google Scholar 

  • Olatunji ON, Du J, Hintz W, Tomas J (2016) Application of particle sedimentation analysis in sterically-stabilized TiO2 particles stability assessment. Adv Powder Technol 27:1325–1336

    Article  CAS  Google Scholar 

  • Pabst W, Gregorova E, Berthold C (2006) Particle shape and suspension rheology of short-fiber systems. J Eur Ceram Soc 26:149–160

    Article  CAS  Google Scholar 

  • Paximada P, Dimitrakopoulou EA, Tsouko E, Koutinas AA, Fasseas C, Mandala IG (2016) Structural modification of bacterial cellulose fibrils under ultrasonic irradiation. Carbohydr Polym 150:5–12

    Article  CAS  PubMed  Google Scholar 

  • Peddireddy KR, Capron I, Nicolai T, Benyahia L (2016) Gelation kinetics and network structure of cellulose nanocrystals in aqueous solution. Biomacromol 2016:3298–3304

    Article  CAS  Google Scholar 

  • Reid MS, Villalobos M, Cranston ED (2016) Cellulose nanocrystal interactions probed by thin film swelling to predict dispersibility. Nanoscale 8:12247–12257

    Article  CAS  PubMed  Google Scholar 

  • Sahlin K, Forsgren L, Moberg T, Bernin D, Rigdahl M, Westman G (2018) Surface treatment of cellulose nanocrystals (CNC): effects on dispersion rheology. Cellulose 25:331–345

    Article  CAS  Google Scholar 

  • Selim MS, Kothari AC, Turian RM (1983) Sedimentation of multisized particles in concentrated suspensions. AIChE J 29:1029–1038

    Article  CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28:17124–17133

    Article  CAS  PubMed  Google Scholar 

  • Sim K, Lee J, Lee H, Youn HJ (2015) Flocculation behavior of cellulose nanofibrils under different salt conditions and its impact on network strength and dewatering ability. Cellulose 22:3689–3700

    Article  CAS  Google Scholar 

  • Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6:1391–1400

    Article  CAS  Google Scholar 

  • Stefaniak AB, Seehra MS, Fix NR, Leonard SS (2014) Lung biodurability and free radical production of cellulose nanomaterials. Inhal Toxicol 26:733–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stickland AD, Buscall R (2009) Whither compressional rhelology? J Non-Newtonian Fluid Mech 157:151–157

    Article  CAS  Google Scholar 

  • Uhlig M, Fall A, Wellert S, Lehmann M, Prévost S, Wågberg L, von Klitzing R, Nyström G (2016) Two-dimensional aggregation and semidilute ordering in cellulose nanocrystals. Langmuir 32:442–450

    Article  CAS  PubMed  Google Scholar 

  • Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20:1885–1896

    Article  CAS  Google Scholar 

  • Yang H, Kang W, Yu Y, Yin X, Wang P, Zhang X (2017) A new approach to evaluate the particle growth and sedimentation of dispersed microsphere profile control system based on multiple light scattering. Powder Technol 315:477–485

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Formulaction staff for helpful discussions on the Turbiscan instrument and software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Johnston.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional figures with SMLS results for silica and CNCs. (PDF 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazloumi, M., Johnston, L.J. & Jakubek, Z.J. Dispersion, stability and size measurements for cellulose nanocrystals by static multiple light scattering. Cellulose 25, 5751–5768 (2018). https://doi.org/10.1007/s10570-018-1961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1961-6

Keywords

Navigation