Skip to main content
Log in

Impact of sonication on the rheological and colloidal properties of highly concentrated cellulose nanocrystal suspensions

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The effect of sonication on a highly concentrated commercial suspension of cellulose nanocrystals (CNCs) and the resulting rheological properties have been investigated. Rheology and structural analysis techniques (atomic force microscopy, small-angle X-ray scattering, transmission electron microscopy and dynamic light scattering) were used to characterize the CNC suspension before and after sonication as a function of concentration. The highly concentrated CNC suspension, which does not contain aggregates, as shown by AFM and TEM imaging, turns from a “gel” form into a “liquid” form after a sonication treatment. The self-organization properties of as-prepared and sonicated suspensions were compared by the determination of their phase diagrams and flow rheology was performed to understand the viscosity behavior as a function of concentration for both systems. Sonication induced a decrease of the inter-particular distance, a strong decrease of the viscosity and remarkable changes in the liquid crystalline behavior, while sonicated and non-sonicated suspensions were stable over time. These effects can be attributed to a decrease in the aspect ratio of the suspended particles, which varies from a high value before sonication due to the presence of elongated bundles to a lower value after sonication that promotes individualization.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abitbol T, Kam D, Levi-Kalisman Y, Gray DG, Shoseyov O (2018) Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir 34:3925–3933

    Article  CAS  PubMed  Google Scholar 

  • Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496

    Article  CAS  Google Scholar 

  • Azzam F, Heux L, Jean B (2016) Adjustment of the chiral nematic phase properties of cellulose nanocrystals by polymer grafting. Langmuir 32:4305–4312

    Article  CAS  PubMed  Google Scholar 

  • Baravian C, Michot LJ, Paineau E, Bihannic I, Davidson P, Impéror-Clerc M, Belamie E, Levitz P (2010) An effective geometrical approach to the structure of colloidal suspensions of very anisometric particles. EPL Europhys Lett 90:36005

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29:6–14

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Berry R (2010) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromol 12:167–172

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromol 13:1486–1494

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054

    Article  CAS  Google Scholar 

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016

    Article  CAS  Google Scholar 

  • Beuguel Q, Tavares JR, Carreau PJ, Heuzey M-C (2018) Ultrasonication of spray- and freeze-dried cellulose nanocrystals in water. J Colloid Interface Sci 516:23–33

    Article  CAS  PubMed  Google Scholar 

  • Bras J, Viet D, Bruzzese C, Dufresne A (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym 84:211–215

    Article  CAS  Google Scholar 

  • Chauve G, Fraschini C, Jean B (2014) Separation of cellulose nanocrystals. In: Handbook of green materials: 1 Bionanomaterials: separation processes, characterization and properties, pp 73–87

  • Cherhal F, Cousin F, Capron I (2015) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31:5596–5602

    Article  CAS  PubMed  Google Scholar 

  • Csiszar E, Kalic P, Kobol A, de Ferreira EP (2016) The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrason Sonochem 31:473–480

    Article  CAS  PubMed  Google Scholar 

  • Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Article  CAS  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Ebeling T, Paillet M, Borsali R, Diat O, Dufresne A, Cavaille JY, Chanzy H et al (1999) Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15:6123–6126

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65

    Article  CAS  Google Scholar 

  • García A, Gandini A, Labidi J, Belgacem N, Bras J (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crops Prod 93:26–38

    Article  CAS  Google Scholar 

  • Gicquel E (2017) Development of stimuli-responsive cellulose nanocrystals hydrogels for smart applications. Ph.D. thesis. Grenoble Alpes University

  • Gicquel E, Martin C, Yanez JG, Bras J (2017) Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties. J Mater Sci 52:3048–3061

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Hamley IW (2010) Liquid crystal phase formation by biopolymers. Soft Matter 6:1863–1871

    Article  CAS  Google Scholar 

  • Hoeng F, Bras J, Gicquel E, Krosnicki G, Denneulin A (2017) Inkjet printing of nanocellulose–silver ink onto nanocellulose coated cardboard. RSC Adv 7:15372–15381

    Article  CAS  Google Scholar 

  • Honorato-Rios C, Lehr C, Schütz C, Sanctuary R, Osipov MA, Baller J, Lagerwall JPF (2018) Fractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation. NPG Asia Mater 10:455

    Article  CAS  Google Scholar 

  • Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym, Sci, p 132

    Google Scholar 

  • Lagerwall JP, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:e80

    Article  CAS  Google Scholar 

  • Lee S-D (1987) A numerical investigation of nematic ordering based on a simple hard-rod model. J Chem Phys 87:4972–4974

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  • Liu D, Chen X, Yue Y, Chen M, Wu Q (2011a) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84:316–322

    Article  CAS  Google Scholar 

  • Liu H, Wang D, Song Z, Shang S (2011b) Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 18:67–74

    Article  CAS  Google Scholar 

  • Lu A, Hemraz U, Khalili Z, Boluk Y (2014) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21:1239–1250

    Article  CAS  Google Scholar 

  • Mao Y, Liu K, Zhan C, Geng L, Chu B, Hsiao BS (2017) Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. J Phys Chem B 121:1340–1351

    Article  CAS  PubMed  Google Scholar 

  • Marchessault RH, Morehead FF, Koch MJ (1961) Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16:327–344

    Article  CAS  Google Scholar 

  • Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52:791–806

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP, Bismarck A, Rojas O, Sain M (2014) Handbook of green materials: processing technologies, properties and applications: vol 5. World Scientific, Singapore

    Book  Google Scholar 

  • Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci 51:627–659

    Article  CAS  Google Scholar 

  • Orts WJ, Godbout L, Marchessault RH, Revol J-F (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725

    Article  CAS  Google Scholar 

  • Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598

    Article  CAS  PubMed  Google Scholar 

  • Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  PubMed  Google Scholar 

  • Revol J-F, Godbout L, Dong X-M, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127–134

    Article  CAS  Google Scholar 

  • Schütz C, Agthe M, Fall AB, Gordeyeva K, Guccini V, Salajková M, Plivelic TS, Lagerwall JPF, Salazar-Alvarez G, Bergström L (2015) Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle X-ray scattering and laser diffraction. Langmuir 31:6507–6513

    Article  CAS  PubMed  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28:17124–17133

    Article  CAS  PubMed  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21:3347–3359

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Sunasee R, Hemraz UD, Ckless K (2016) Cellulose nanocrystals: a versatile nanoplatform for emerging biomedical applications. Expert Opin Drug Deliv 13:1243–1256

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Sisler J, Grishkewich N, Tam KC (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409

    Article  CAS  PubMed  Google Scholar 

  • Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998

    Article  CAS  Google Scholar 

  • Watson JD (1954) The structure of tobacco mosaic virus: I. X-ray evidence of a helical arrangement of sub-units around the longitudinal axis. Biochim Biophys Acta 13:10–19

    Article  CAS  PubMed  Google Scholar 

  • Xu H-N, Tang Y-Y, Ouyang X-K (2017a) Shear-induced breakup of cellulose nanocrystal aggregates. Langmuir 33:235–242

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Atrens AD, Stokes JR (2017b) Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods. J Colloid Interface Sci 496:130–140

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Atrens AD, Stokes JR (2018) “Liquid, gel and soft glass” phase transitions and rheology of nanocrystalline cellulose suspensions as a function of concentration and salinity. Soft Matter 14:1953–1963

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Albelda MT, Liu Y, Canary JW (2005) Chiral nanotechnology. Chirality 17:404–420

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the PolyNat Carnot Institute (Investissements d’Avenir - grant agreement n°ANR-11-CARN-007-01). This research has been possible thanks to the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European regional development fund). We thank the NanoBio-ICMG platform (Grenoble, FR 2607) for granting access to the Electron Microscopy facility. This work benefitted from SasView software 4.0.1, originally developed by the DANSE project under NSF award DMR-0520547 (SasView, http://www.sasview.org/). The Laboratoire Rhéologie et Procédés is part of the LabEx Tec21 (Investissements d’Avenir – grant agreement ANR-11-LABX-0033). All laboratories are part of Institut Carnot PolyNat (Investissements d’Avenir – grant agreement ANR-11-CARN-030-01) and the Glyco@Alps program (Initiative d’Excellence – grant agreement ANR-15-IDEX-02). We gratefully acknowledge the ESRF for the beam time allocation (proposal SC 4177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Martin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gicquel, E., Bras, J., Rey, C. et al. Impact of sonication on the rheological and colloidal properties of highly concentrated cellulose nanocrystal suspensions. Cellulose 26, 7619–7634 (2019). https://doi.org/10.1007/s10570-019-02622-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02622-7

Keywords

Navigation