Skip to main content

Abstract

Pectin is a highly complex polysaccharide made of three main domains that are covalently linked one to another, homogalacturonan, rhamnogalacturonan I and rhamnogalacturonan II. The dominant feature of pectin consists of a linear chain of α-(1,4)-linked d-galacturonic acid units known as homogalacturonan domain or pectin smooth region. The second fundamental feature of pectin structure is the recurrent presence of rhamnosyl residues. α-(1,4)-Linked d-galacturonopyranosyl units can be interrupted by the insertion of α-(1,2)-linked l-rhamnopyranosyl units giving a type I rhamnogalacturonan to which arabinose- and galactose-containing side-chains are generally attached. Finally, rhamnogalacturonan II consisting of a highly branched homogalacturonan oligosaccharide, is a minor though crucial element of pectin. Although, as illustrated in this chapter, much is known about the structure of the different pectin domains, understanding the intra- and inter-molecular heterogeneity of pectin macromolecules and the way pectin domains are attached to each other is still challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aspinall GO, Begbie R, Hamilton A et al (1967) Polysaccharides of soy-beans. Part III. Extraction and fractionation of polysaccharides from cotyledon meal. J Chem Soc C 170:1065–1070

    Article  Google Scholar 

  • Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779

    Article  CAS  PubMed  Google Scholar 

  • Avci U, Pena MJ, O’Neill MA (2018) Changes in the abundance of cell wall apiogalacturonan and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae. Planta 247:953–971

    Article  CAS  PubMed  Google Scholar 

  • Bonnin E, Dolo E, Le Goff A et al (2002) Characterisation of pectin subunits released by an optimised combination of enzymes. Carbohydr Res 337:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Braconnot H (1825a) Recherches sur un nouvel acide universellement répandu dans tous les végétaux. Ann Chim Phys 28:173–178

    Google Scholar 

  • Braconnot H (1825b) Nouvelles observations sur l’acide pectique. Ann Chim Phys 30:96–102

    Google Scholar 

  • Broxterman SE (2018) The architecture of the primary cell walls: the role of pectin reconsidered. PhD thesis, Wageningen University, The Netherland

    Google Scholar 

  • Buffetto F, Ropartz D, Zhang XJ et al (2014) Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot). Ann Bot 114:1327–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buffetto F, Cornuault V, Ridahl MG et al (2015) The deconstruction of pectic rhamnogalacturonan I unmasks the occurrence of a novel arabinogalactan oligosaccharide epitope. Plant Cell Physiol 56:2181–2196

    CAS  PubMed  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Coenen GJ, Bakx EJ, Verhoef RP et al (2007) Identification of the connecting linkage between homo- or xylogalacturonan and rhamnogalacturonan type I. Carbohydr Polym 70:224–235

    Article  CAS  Google Scholar 

  • Colquhoun IJ, de Ruiter GA, Schols HA et al (1990) Identification by n.m.r. spectroscopy of oligosaccharides obtained by treatment of the hairy regions of apple pectin with rhamnogalacturonase. Carbohydr Res 206:131–144

    Article  CAS  PubMed  Google Scholar 

  • Colquhoun I, Ralet MC, Thibault JF (1994) Structure identification of feruloylated oligosaccharides from sugar-beet pulp by NMR spectroscopy. Carbohydr Res 263:243–256

    Article  CAS  PubMed  Google Scholar 

  • Cornuault V, Buffetto F, Rydahl MG et al (2015) Monoclonal antibodies indicate low-abundance links between heteroxylan and other glycans of plant cell walls. Planta 242:1321–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daas PJH, Voragen AGJ, Schols HA (2000) Investigation of the galacturonic acid distribution of pectin with enzymes part 2 - characterization of non-esterified galacturonic acid sequences in pectin with endopolygalacturonase. Carbohydr Res 326:120–129

    Article  CAS  PubMed  Google Scholar 

  • de Vries JA, Voragen AGJ, Rombouts FM et al (1981) Extraction and purification of pectins from alcohol insoluble solids from ripe and unripe apples. Carbohydr Polym 1:117–127

    Article  Google Scholar 

  • de Vries JA, Rombouts FM, Voragen AGJ et al (1982) Enzymic degradation of apple pectins. Carbohydr Polym 2:25–33

    Article  Google Scholar 

  • de Vries JA, den Uijl CH, Voragen AGJ et al (1983) Structural features of the neutral sugar side chains of apple pectic substances. Carbohydr Polym 3:193–205

    Article  Google Scholar 

  • Dong X, Huang YF, Cho BG et al (2018) Advances in mass spectrometry-based glycomics. Electrophoresis 39:3063–3081

    Article  CAS  PubMed  Google Scholar 

  • Fry SC (1986) Cross linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  • Gloaguen V, Brudieux V, Closs B et al (2010) Structural characterization and cytotoxic properties of an apiose-rich pectic polysaccharide obtained from the cell wall of the marine phanero- gam Zostera marina. J Nat Prod 73:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Glushka JN, Terrell M, York WS et al (2003) Primary structure of the 2-O-methyl-alpha-L-fucose-containing side chain of the pectic polysaccharide, rhamnogalacturonan II. Carbohydr Res 338:341–352

    Article  CAS  PubMed  Google Scholar 

  • Guillon F, Thibault JF (1989) Methylation analysis and mild acid hydrolysis of the “hairy” fragments of sugar-beet pectins. Carbohydr Res 190:85–96

    Article  CAS  Google Scholar 

  • Guillotin SE, Bakx EJ, Boulenguer P et al (2005) Populations having different GalA blocks characteristics are present in commercial pectins which are chemically similar but have different functionalities. Carbohydr Polym 60:391–398

    Article  CAS  Google Scholar 

  • Hart DA, Kindel PK (1970) Isolation and partial characterization of apiogalacturonans from the cell wall of Lemna minor. Biochem J 116:569–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellin P, Ralet MC, Bonnin E et al (2005) Homogalacturonans from lime pectins exhibit homogeneous charge density and molar mass distributions. Carbohydr Polym 60:307–317

    Article  CAS  Google Scholar 

  • Hinz SWA, Verhoef R, Schols HA et al (2005) Type I arabinogalactan contains β-d-Galp-(1,3)-β-d-Galp structural elements. Carbohydr Res 340:2135–2143

    Article  CAS  PubMed  Google Scholar 

  • Huisman MMH, Brüll LP, Thomas-Oates JE et al (2001) The occurrence of internal (1,5)-linked arabinofuranose and arabinopyranose residues in arabinogalactan side chains from soybean pectic substances. Carbohydr Res 330:103–114

    Article  CAS  PubMed  Google Scholar 

  • Ishii T (1997) O-Acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiol 113:1265–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Kaneko S (1998) Oligosaccharides generated by partial hydrolysis of the borate-rhamnogalacturonan II complex from sugar beet. Phytochemistry 49:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Tobita T (1993) Structural characterization of feruloyl oligo- saccharides from spinach-leafs cell walls. Carbohydr Res 248:179–190

    Article  CAS  PubMed  Google Scholar 

  • Kaneko S, Ishii T, Matsunaga T (1997) A boron-rhamnogalacturonan-II complex from bamboo shoot cell walls. Phytochemistry 44:243–248

    Article  CAS  Google Scholar 

  • Keenan MHJ, Belton PS, Matthew JA et al (1985) A 13C-n.m.r. study of sugar-beet pectin. Carbohydr Res 138:168–170

    Article  CAS  Google Scholar 

  • Kertesz ZI (1951) The pectic substances. Interscience Publishers Inc., New York

    Google Scholar 

  • Kohn R, Furda I (1968) Binding of calcium ions to acetyl derivatives of pectin. Collect Czechoslov Chem Commun 33:2217–2225

    Article  CAS  Google Scholar 

  • Kohn R, Malovikova A (1978) Dissociation of acetyl derivatives of pectic acid and intramolecular binding of calcium ions to those substances. Collect Czechoslov Chem Commun 43:1709–1719

    Article  CAS  Google Scholar 

  • Komalavilas P, Mort AJ (1989) The acetylation at O-3 of galacturonic acid in the rhamnose-rich portion of pectins. Carbohydr Res 189:261–272

    Article  CAS  Google Scholar 

  • Konno H, Yamasaki Y, Katoh K (1986) Enzymatic degradation of pectic substances and cell walls purified from carrot cell cultures. Phytochemistry 25:623–627

    Article  CAS  Google Scholar 

  • Körner R, Limberg G, Christensen TMIE et al (1999) Sequencing of partially methyl-esterified oligogalacturonates by tandem mass spectrometry and its use to determine pectinase specificities. Anal Chem 71:1421–1427

    Article  PubMed  Google Scholar 

  • Lau JM, Mc Neill M, Darvill AG et al (1985) Structure of the backbone of rhamnogalacturonan I, a pectic polysaccharide in the primary cell walls of plants. Carbohydr Res 137:111–125

    Article  CAS  Google Scholar 

  • Lau JM, McNeil M, Darvill AG et al (1987) Treatment of rhamnogalacturonan I with lithium in ethylenediamine. Carbohydr Res 168:245–274

    Article  CAS  Google Scholar 

  • Le Goff A, Renard CMGC, Bonnin E et al (2001) Extraction, purification and chemical characterisation of xylogalacturonans from pea hulls. Carbohydr Polym 45:325–334

    Article  Google Scholar 

  • Lerouge P, O’Neill MA, Darvill AG et al (1993) Structural characterization of endo-glucanase-generated oligoglycosyl side chains of rhamnogalacturonan I. Carbohydr Res 243:359–371

    Article  CAS  PubMed  Google Scholar 

  • Levigne SV, Ralet MCJ, Quéméner B et al (2004) Isolation from sugar beet cell walls of arabinan oligosaccharides esterified by two ferulic acid monomers. Plant Physiol 134:1173–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limberg G, Körner R, Buchholt HC et al (2000) Analysis of different de-esterification mecha- nisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. niger. Carbohydr Res 327:293–307

    Article  CAS  PubMed  Google Scholar 

  • Longland JM, Fry SC, Trewavas AJ (1989) Developmental control of apiogalacturonan biosynthesis and UDP-apiose production in a duckweed. Plant Physiol 90:972–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga T, Ishii T, Matsumoto S et al (2004) Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants. Plant Physiol 134:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil M, Darvill AG, Albersheim P (1980) Structure of plant cell walls. X. Rhamnogalacturonan I, a structurally complex pectic polysaccharide in the walls of suspension-cultured sycamore cells. Plant Physiol 66:1128–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil M, Darvill AG, Fry SC et al (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53:625–663

    Article  CAS  PubMed  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  • Morita M (1965a) Polysaccharides of soybean seeds. Part 1. Polysaccharide constituents of "hot-water-extract" fraction of soybean seeds and an arabinogalactan as its major component. Agric Biol Chem 29:564–573

    Article  CAS  Google Scholar 

  • Morita M (1965b) Polysaccharides of soybean seeds. Part 2. A methylated arabinogalactan isolated from methylated product of “hot-water-extract” fraction of soybean seed polysaccharides. Agric Biol Chem 29:626–630

    CAS  Google Scholar 

  • Mort A, Zheng Y, Qiu F et al (2008) Structure of xylogalacturonan fragments from watermelon cell-wall pectin. Endopolygalacturonase can accommodate a xylosyl residue on the galacturonic acid just following the hydrolysis site. Carbohydr Res 343:1212–1221

    Article  CAS  PubMed  Google Scholar 

  • Mucha E, Marianski M, Xu FF et al (2018) Unravelling the structure of glycosyl cations via cold-ion infrared spectroscopy. Nat Commun 9:4174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura A, Furuta H, Maeda H et al (2002) Structural studies by stepwise enzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galacturonan and rhamnogalacturonan. Biosci Biotechnol Biochem 66:1301–1313

    Article  CAS  PubMed  Google Scholar 

  • Ndeh D, Rogowski A, Cartmell A et al (2017) Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needs PW, Rigby NM, Colqhoun IJ et al (1998) Conflicting evidence for non-methyl galacturonoyl esters in Daucus carota. Phytochemistry 48:71–77

    Article  CAS  Google Scholar 

  • Ngouemazong DE, Tengweh FF, Duvetter T et al (2011) Quantifying structural characteristics of partially de-esterified pectins. Food Hydrocoll 25:434–443

    Article  CAS  Google Scholar 

  • Normand J, Ralet MC, Thibault JF (2010) Purification, characterization, and mode of action of a rhamnogalacturonan hydrolase from Irpex lacteus, tolerant to an acetylated substrate. Appl Microbiol Biotechnol 86:577–588

    Article  CAS  PubMed  Google Scholar 

  • O’Neill M, Albersheim P, Darvill A (1990) The pectic polysaccharides of primary cell walls. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry, Carbohydrates, vol 2. Academic Press, London, pp 415–441

    Chapter  Google Scholar 

  • Øbro J, Harholt J, Scheller HV et al (2004) Rhamnogalacturonan I in Solanum tuberosum tubers contains complex arabinogalactans structures. Phytochemistry 65:1429–1438

    Article  PubMed  CAS  Google Scholar 

  • Oosterveld A, Beldman G, Searle-van Leeuwen MJF et al (2000a) Effect of enzymatic deacetylation on gelation of sugar beet pectin in the presence of calcium. Carbohydr Polym 43:249–256

    Article  CAS  Google Scholar 

  • Oosterveld A, Beldman G, Schols HA et al (2000b) Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohydr Res 328:185–197

    Article  CAS  PubMed  Google Scholar 

  • Oosterveld A, Beldman G, Voragen AGJ (2002) Enzymatic modification of pectic polysaccharides obtaines from sugar beet pulp. Carbohydr Polym 48:73–81

    Article  CAS  Google Scholar 

  • Ovodov YS, Ovodova RG, Bondarenko OD et al (1971) The pectic substances of Zosteraceae: Part IV. Pectinase digestion of zosterine. Carbohydr Res 18:311–318

    Article  CAS  Google Scholar 

  • Pabst M, Fischl RM, Brecker L et al (2013) Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. Plant J 76:61–72

    CAS  PubMed  Google Scholar 

  • Perrone P, Hewage CM, Thomson AR et al (2002) Patterns of methyl and O-acetyl esterification in spinach pectins: new complexity. Phytochemistry 60:67–77

    Article  CAS  PubMed  Google Scholar 

  • Pippen E, McCready RM, Owens HS (1950) Gelation properties of partly acetylated pectins. J Am Chem Soc 72:813–816

    Article  CAS  Google Scholar 

  • Quéméner B, Ralet MC (2004) Evidence for linkage position determination in known feruloylated mono- and disaccharides using electrospray ion trap mass spectrometry. J Mass Spectrom 39:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Quéméner B, Désiré C, Lahaye M et al (2003) Structural characterisation by both positive- and negative-ion electrospray mass spectrometry of partially methyl-esterified oligogalacturonides purified by semi-preparative high-performance anion-exchange chromatography. Eur J Mass Spectrom 9:45–60

    Article  CAS  Google Scholar 

  • Ralet MC, Thibault JF (2009) Hydrodynamic properties of isolated pectic domains: a way to figure out pectin macromolecular structure? In: Schols HA, Visser RGF, Voragen AGJ (eds) Pectins and pectinases. Wageningen Academic Publishers, Wageningen, pp 35–48

    Google Scholar 

  • Ralet MC, Crépeau MJ, Buchholt HC et al (2003) Polyelectrolyte behaviour and calcium binding properties of sugar beet pectins differing in their degrees of methylation and acetylation. Biochem Eng J 16:191–201

    Article  CAS  Google Scholar 

  • Ralet MC, Cabrera JC, Bonnin E et al (2005) Mapping sugar beet pectin acetylation pattern. Phytochemistry 66:1832–1843

    Article  CAS  PubMed  Google Scholar 

  • Ralet MC, Crépeau MJ, Bonnin E (2008) Evidence for a blockwise distribution of acetyl groups onto homogalacturonans from a commercial sugar beet (Beta vulgaris) pectin. Phytochemistry 69:1903–1909

    Article  CAS  PubMed  Google Scholar 

  • Ralet MC, Lerouge P, Quéméner B (2009) Mass spectrometry for pectin structure analysis. Carbohydr Res 344:1798–1807

    Article  CAS  PubMed  Google Scholar 

  • Ralet MC, Martins W, Tanhatan Nasseri A et al (2012) An innovative enzymatic approach to apprehend the methylesterification pattern of homogalacturonans. Biomacromolecules 13:1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Remoroza C, Cord-Landwehr S, Leijdekkers AGM et al (2012) Combined HILIC-ELSD/ESI-MSn enables the separation, identification and quantification of sugar beet pectin derived oligomers. Carbohydr Polym 90:41–48

    Article  CAS  PubMed  Google Scholar 

  • Remoroza C, Buchholt HC, Gruppen H et al (2014) Descriptive parameters for revealing substitution patterns of sugar beet pectins using pectolytic enzymes. Carbohydr Polym 101:1205–1215

    Article  CAS  PubMed  Google Scholar 

  • Renard C, Jarvis M (1999) Acetylation and methylation of homogalacturonans 2. Effect on ion-binding properties and conformations. Carbohydr Polym 39:209–216

    Article  CAS  Google Scholar 

  • Renard C, Crépeau MJ, Thibault JF (1995) Structure of the repeating units in the rhamnogalacturonic backbone of apple, beet and citrus pectins. Carbohydr Res 275:155–165

    Article  CAS  Google Scholar 

  • Renard C, Crépeau MJ, Thibault JF (1999) Glucuronic acid directly linked to galacturonic acid in the rhamnogalacturonan backbone of beet pectins. Eur J Biochem 266:566–574

    Article  CAS  PubMed  Google Scholar 

  • Reuhs BL, Glenn J, Stephens SB et al (2004) L-Galactose replaces L-Fucose in the pectic polysaccharide rhamnogalacturonan II synthesized by the L-fucose-deficient mur1 Arabidopsis mutant. Planta 219:147–157

    Article  CAS  PubMed  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signalling. Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  • Rombouts FM, Thibault JF (1986) Enzymatic and chemical degradation and the fine structure of pectins from sugar-beet pulp. Carbohydr Res 154:189–203

    Article  CAS  Google Scholar 

  • Ropartz D (2015) Apport des dernières évolutions en spectrométrie de masse pour l’étude structurale des polysaccharides. Université de Nantes, Nantes

    Google Scholar 

  • Ropartz D, Lemoine J, Giuliani A et al (2014) Deciphering the structure of isomeric oligosaccharides in a complex mixture by tandem mass spectrometry: Photon activation with vacuum ultra-violet brings unique information and enables definitive structure assignment. Anal Chim Acta 807:84–95

    Article  CAS  PubMed  Google Scholar 

  • Ropartz D, Li P, Fanuel M et al (2016) Charge transfer dissociation of complex oligosaccharides: comparison with collision-induced dissociation and extreme ultraviolet dissociative photoionization. J Am Soc Mass Spectrom 27:1614–1619

    Article  CAS  PubMed  Google Scholar 

  • Ropartz D, Li P, Jackson GP et al (2017) Negative polarity helium charge transfer dissociation tandem mass spectrometry: Radical-initiated fragmentation of complex polysulfated anions. Anal Chem 89:3824–3828

    Article  CAS  PubMed  Google Scholar 

  • Ropartz D, Fanuel M, Ujma J et al (2019) Structure determination of large isomeric oligosaccharides of natural origin through multi-pass and multi-stage cyclic traveling wave ion mobility mass spectrometry. Anal Chem 91:12030–12037

    Article  CAS  PubMed  Google Scholar 

  • Round AN, Rigby NM, MacDougall AJ et al (2010) A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. Carbohydr Res 345:487–497

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Sakai T (1995) Analysis of structure of sugar-beet pectin by enzymatic methods. Phytochemistry 39:821–823

    Article  CAS  PubMed  Google Scholar 

  • Schindler B, Barnes L, Renois G et al (2017) Anomeric memory of the glycosidic bond upon fragmentation and its consequences for carbohydrate sequencing. Nat Commun 8:7

    Article  CAS  Google Scholar 

  • Schols HA, Voragen AGJ (1994) Occurrence of pectic hairy regions in various plant cell wall materials and their degradability by rhamnogalacturonase. Carbohydr Res 256:83–95

    Article  CAS  Google Scholar 

  • Schols HA, Voragen AGJ (1996) Complex pectins: Structure elucidation using enzymes. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Elsevier, Amsterdam, pp 3–19

    Chapter  Google Scholar 

  • Schols HA, Voragen AGJ (2002) The chemical structure of pectins. In: Seymour GB, Knox JP (eds) Pectins and their manipulation. Blackwell Publishing-CRC Press, Oxford, pp 1–29

    Google Scholar 

  • Schols HA, Bakx EJ, Schipper D et al (1995a) A xylogalacturonan subunit present in the modified hairy regions of apple pectin. Carbohydr Res 279:265–279

    Article  CAS  Google Scholar 

  • Schols HA, Vierhuis E, Bakx EJ et al (1995b) Different populations of pectic hairy regions occur in apple cell walls. Carbohydr Res 275:343–360

    Article  CAS  PubMed  Google Scholar 

  • Sengkhamparn N, Verhoef R, Bakx EJ et al (2009) Okra pectin contains an unusual substitution of its rhamnosyl residues with actyl and alpha-linked galactosyl groups. Carbohydr Res 334:1842–1851

    Article  CAS  Google Scholar 

  • Seveno M, Voxeur A, Rihouey C et al (2009) Structural characterisation of the pectic polysaccharide rhamnogalacturonan II using an acidic fingerprinting methodology. Planta 230:947–957

    Article  CAS  PubMed  Google Scholar 

  • Shin KS, Kiyohara H, Matsumoto T et al (1998) Rhamnogalacturonan II dimers cross-linked by borate diesters from the leaves of Panax ginseng C.A. Meyer are responsible for expression of their IL-6 production enhancing activities. Carbohydr Res 307:97–106

    Article  CAS  Google Scholar 

  • Smolenski K (1923) Pectins. Rocznigi Chemki 3:86–152

    CAS  Google Scholar 

  • Spellman MW, McNeil M, Darvill AG et al (1983) Structure of plant cell-walls.14. Characterization of a structurally complex heptasaccharide isolated from the pectic polysaccharide rhamnogalacturonan-II. Carbohydr Res 122:131–153

    Article  CAS  Google Scholar 

  • Stevenson T, Darvill AG, Albersheim P (1988) Structure of plant-cell walls. 23. Structural features of the plant cell-wall polysaccharide rhamnogalacturonan-II. Carbohydr Res 182:207–226

    Article  CAS  Google Scholar 

  • Ström A, Ribelles P, Lundin L et al (2007) Influence of pectin fine structure on the mechanical properties of calcium-pectin and acid-pectin gels. Biomacromolecules 8:2668–2674

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Ropartz D, Cui LN et al (2019) Structural characterization of rhamnogalacturonan domains from Panax ginseng C. A. Meyer. Carbohydr Polym 203:119–127

    Article  CAS  PubMed  Google Scholar 

  • Thibault JF, Renard C, Axelos M et al (1993) Studies of the length of homogalacturonic regions in pectins by acid-hydrolysis. Carbohydr Res 238:271–286

    Article  CAS  Google Scholar 

  • Thomas JR, Darvill AG, Albersheim P (1989) Isolation and structural characterization of the pectic polysaccharide rhamnogalacturonan II from walls of suspension-cultured rice cells. Carbohydr Res 185:261–277

    Article  CAS  Google Scholar 

  • Ujma J, Ropartz D, Giles K et al (2019) Cyclic ion mobility mass spectrometry distinguishes anomers and open-ring forms of pentasaccharides. J Am Soc Mass Spectrom 30:1028–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Alebeek GJWM, Zabotina O, Beldman G et al (2000) Structural analysis of (methyl-esterified) oligogalacturonides using post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 35:831–840

    Article  PubMed  Google Scholar 

  • Varki A, Cummings RD, Aebi M et al (2015) Symbol nomenclature for graphical representations of glycans. Glycobiology 25:1323–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vauquelin LN (1790) Analyse du tamarin. Ann Chim 5:92–106

    Google Scholar 

  • Vidal S, Doco T, Williams P et al (2000) Structural characterization of the pectic polysaccharide rhamnogalacturonan II: evidence for the backbone location of the aceric acid-containing oligoglycosyl side chain. Carbohydr Res 326:277–294

    Article  CAS  PubMed  Google Scholar 

  • Vincken JP, Schols HA, Oomen RJFJ et al (2003) If homogalacturonan were a side-chain of rhamnogalacturonan I. Implication for cell wall architecture. Plant Physiol 132:1781–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voragen AGJ, Pilnik W, Thibault JF et al (1995) Pectins. In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker Inc, New York, pp 287–339

    Google Scholar 

  • Voragen AGJ, Coenen GJ, Verhoef RP et al (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275

    Article  CAS  Google Scholar 

  • Westphal Y, Kühnel S, de Waard P et al (2010) Branched arabino-oligosaccharides isolated from sugar beet arabinan. Carbohydr Res 345:1180–1189

    Article  CAS  PubMed  Google Scholar 

  • Whitcombe AJ, Oneill MA, Steffan W, Albersheim P, Darvill AG (1995) Structural characterization of the pectic polysaccharide, rhamnogalacturonan-II. Carbohydr Res 271:15–29

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, McCartney L, Mackie W et al (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, Knox JP, Mikkelsen JD (2006) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol 17:97–104

    Article  CAS  Google Scholar 

  • Yapo BM (2011) Rhamnogalacturonan-I: A structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym Rev 51:391–413

    Article  CAS  Google Scholar 

  • Yapo BM, Lerouge P, Thibault JF et al (2007) Pectins from citrus plant cell walls contain homogalacturonan homogeneous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydr Polym 69:426–435

    Article  CAS  Google Scholar 

  • Zandleven JS, Beldman G, Bosveld M et al (2006) Enzymatic degradation studies of xylogalacturonans from apple and potato, using xylogalacturonan hydrolase. Carbohydr Polym 65:495–503

    Article  CAS  Google Scholar 

  • Zandleven J, Sorensen SO, Harholt J et al (2007) Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana. Phytochemistry 68:1219–1226

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Christine Ralet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ropartz, D., Ralet, MC. (2020). Pectin Structure. In: Kontogiorgos, V. (eds) Pectin: Technological and Physiological Properties. Springer, Cham. https://doi.org/10.1007/978-3-030-53421-9_2

Download citation

Publish with us

Policies and ethics