Skip to main content
Log in

Highly improved mechanical strength of aramid paper composite via a bridge of cellulose nanofiber

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel aramid paper composite based on pretreated meta-aramid fiber via the addition of cellulose nanofiber (CNF) was fabricated, and the mechanical strength and interfacial strength of the aramid paper composite were investigated. The results indicated that modified fibers showed higher roughness and more available hydrophilic groups. Besides, compared with the pristine aramid paper, it turned out that the tensile index, tear index and interlayer bonding strength of the paper composites with CNF increased by 2.04 times, 2.36 times and 3 times, respectively. In addition, tensile energy absorption (TEA) was also improved by an increment of 99.7% with 20 wt% CNF. These apparent evidences can be accounted for the following mechanisms. On the one hand, enhanced mechanical properties of aramid paper composite were derived from the strong hydrogen bonding or dipole–dipole coupling interaction between aramid fiber and CNF. On the other hand, significant reinforcement of interlayer bonding strength can be attributed to the pivotal bonding bridge and filling agent between aramid chopped fibers (ACFs) and fibrid, which could improve interfacial adhesion of paper sheet. The thin film structure like “spider web” or “silk” from SEM images indicated the CNF was used as a bridge actually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Benrashid R, Tesoro GC (1990) Effect of surface-limited reactions on the properties of kevlar(R) fibers. Text Res J 60(6):334–344

    Article  CAS  Google Scholar 

  • Cao K, Siepermann CP, Yang M, Waas AM, Kotov NA, Thouless MD, Arruda EM (2013) Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv Funct Mater 23(16):2072–2080

    Article  CAS  Google Scholar 

  • Chen J, Zhu Y, Ni Q, Fu Y, Fu X (2014) Surface modification and characterization of aramid fibers with hybrid coating. Appl Surf Sci 321(321):103–108

    Article  CAS  Google Scholar 

  • Cheng Z, Li B, Huang J, Chen T, Liu Y, Wang X, Liu X (2016) Covalent modification of Aramid fibers’ surface via direct fluorination to enhance composite interfacial properties. Mater Des 106(15):216–225

    Article  CAS  Google Scholar 

  • Deka BK, Kong K, Jaewoo Seo, Kim DY, Park YB, Park HW (2015) Controlled growth of CuO nanowires on woven carbon fibers and effects on the mechanical properties of woven carbon fiber/polyester composites. Compos Part A 69(69):56–63

    Article  CAS  Google Scholar 

  • Desai AV, Haque MA (2005) Mechanics of the interface for carbon nanotube-polymer composites. Thin-Walled Struct 43(11):1787–1803

    Article  Google Scholar 

  • Fan J, Shi Z, Yin J (2013) Graphene/aramid nanofiber nanocomposite paper with high mechanical and electrical performances. RSC Adv 3(39):17664–17667

    Article  CAS  Google Scholar 

  • Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91(1):377–384

    Article  CAS  Google Scholar 

  • García JM, García FC, Serna F, Peña JL (2010) High-performance aromatic polyamides. Prog Polym Sci 35:623–686

    Article  Google Scholar 

  • Ghosh L, Fadhilah MH, Kinoshita H, Ohmae N (2006) Synergistic effect of hyperthermal atomic oxygen beam and vacuum ultraviolet radiation exposures on the mechanical degradation of high-modulus aramid fibers. Polymer 47(19):6836–6842

    Article  CAS  Google Scholar 

  • Goulouti K, Castro J, Keller T (2016) Aramid/glass fiber-reinforced thermal break–thermal and structural performance. Compos Struct 136(2):113–123

    Article  Google Scholar 

  • Jia C, Chen P, Liu W, Li B, Wang Q (2011) Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure. Appl Surf Sci 257(9):4165–4170

    Article  CAS  Google Scholar 

  • Kong H, Teng C, Liu X, Zhou J, Zhong H, Zhang Y, Han K, Yu M (2014) Simultaneously improving the tensile strength and modulus of aramid fiber by enhancing amorphous phase in supercritical carbon dioxide. RSC Adv 4(39):20599

    Article  CAS  Google Scholar 

  • Lee CY, Bae JH, Kim TY, Chang SH, Kim SY (2015) Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites. Composites Part A Appl Sci Manuf 75:11–17

    Article  CAS  Google Scholar 

  • Li G, Zhang C, Wang Y, Li P, Yu Y, Jia X, Liu H, Yang X, Xue Z, Ryu S (2008) Interface correlation and toughness matching of phosphoric acid functionalized Kevlar fiber and epoxy matrix for filament winding composites. Compos Sci Technol 68(15):3208–3214

    Article  CAS  Google Scholar 

  • Li K, Li L, Qin J, Liu X (2016) A facile method to enhance UV stability of PBIA fibers with intense fluorescence emission by forming complex with hydrogen chloride on the fibers surface. Polym Degrad Stab 128:278–285

    Article  CAS  Google Scholar 

  • Lin TK, Wu SJ, Lai JG, Shyu SS (2000) The effect of chemical treatment on reinforcement/matrix interaction in Kevlar-fiber/bismaleimide composites. Compos Sci Technol 60(9):1873–1878

    Article  CAS  Google Scholar 

  • Liu L, Huang Y, Zhang Z, Jiang Z, Wu L (2008) Ultrasonic treatment of aramid fiber surface and its effect on the interface of aramid/epoxy composites. Appl Surf Sci 254(9):2594–2599

    Article  CAS  Google Scholar 

  • Liu D, Yuan X, Bhattacharyya D (2011) The effects of cellulose nanowhiskers on electrospun poly (lactic acid) nanofibres. J Mater Sci 47(7):3159–3165

    Article  Google Scholar 

  • Liu D, Sun X, Tian H, Maiti S, Ma Z (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 6(20):2981–2989

    Article  Google Scholar 

  • Lu Z, Fan L, Zheng H, Lu Q, Liao Y, Huang B (2013) Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted. Bioresour Technol 146(10):82–88

    Article  CAS  Google Scholar 

  • Lu Z, Jiang M, Zhang M, Song S, Yang B (2014) Characteristics of Poly (p-phenylene terephthalaramide) pulps and their effects in aramid paper. Appita J 67(4):316–320

    Google Scholar 

  • Ma J, Meng Q, Michelmore A, Kawashima N, Izzuddin Z, Bengtsson C, Kuan HC (2013) Covalently bonded interfaces for polymer/graphene composites. J Mater Chem A 1(13):4255–4264

    Article  CAS  Google Scholar 

  • Maciejewska BM, Jasiurkowska Delaporte M, Vasylenko AI, Kozioł KK, Jurga S (2014) Experimental and theoretical studies on the mechanism for chemical oxidation of multiwalled carbon nanotubes. RSC Adv 55(4):28826–28831

    Article  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78(4):547–552

    Article  CAS  Google Scholar 

  • Park SJ, Seo MK, Ma TJ, Lee DR (2002) Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites. J Colloid Interface Sci 252(1):249–255

    Article  CAS  Google Scholar 

  • Sa R, Yan Y, Wei Z, Zhang L, Wang W, Tian M (2014) Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting. ACS Appl Mater Interfaces 6(23):21730–21738

    Article  CAS  Google Scholar 

  • Sha L, Zhao H (2013) Effect of surface modification process conditions on properties of aramid paper. Polymer Korea 37(10):196–203

    Article  CAS  Google Scholar 

  • Shim VPW, Lim CT, Foo KJ (2001) Dynamic mechanical properties of fabric armour. Int J Imp Eng 25(1):1–15

    Article  Google Scholar 

  • Sun L, Jia Y, Ma F, Zhao J, Han C (2008) Influence of interfacial properties on crack propagation in fiber-reinforced polymer matrix composites. Macromol Mater Eng 293(3):194–205

    Article  CAS  Google Scholar 

  • Sun L, Gibson RF, Gordaninejad F, Suhr J (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69(14):2392–2409

    Article  CAS  Google Scholar 

  • Sun Z, Shi S, Hu X, Chen H, Wong Z (2014) Adhesive joints between carbon fiber and aluminum foam reinforced by surface-treated aramid fibers. Polym Compos 36(1):192–197

    Article  Google Scholar 

  • Veigel S, Müller U, Keckes J, Obersriebnig M, Gindl-Altmutter W (2011) Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds. Cellulose 18(5):1227–1237

    Article  CAS  Google Scholar 

  • Wang C, Du M, Lv J, Zhou Q, Ren Y, Liu G, Gao D, Jin L (2015) Surface modification of aramid fiber by plasma induced vapor phase graft polymerization of acrylic acid. I. Influence of plasma conditions. Appl Surf Sci 349:333–342

    Article  CAS  Google Scholar 

  • Xi M, Li Y, Shang S, Li D, Yin Y, Dai X, Xi M, Li Y, Shang S, Li D (2008) Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing. Surf Coat Technol 202(24):6029–6033

    Article  CAS  Google Scholar 

  • Yuan L, Cueva MC, Lara-Curzio E, Ozcan S (2015) Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Carbohydr Polym 131:208–217

    Article  Google Scholar 

  • Yuan G, Bai Y, Jia Z, Hui D, Lau K (2016) Enhancement of interfacial bonding strength of SMA smart composites by using mechanical indented method. Compos B 106:99–106

    Article  CAS  Google Scholar 

  • Zhang Y, Huang Y, Liu L, Cai K (2008) Effects of γ-ray radiation grafting on aramid fibers and its composites. Appl Surf Sci 254(10):3153–3161

    Article  CAS  Google Scholar 

  • Zhang S, He G, Liang G, Cui H, Zhang W, Wang B (2010) Comparison of F-12 aramid fiber with domestic armid fiber III on surface feature. Appl Surf Sci 256(7):2104–2109

    Article  CAS  Google Scholar 

  • Zhao J (2013) Effect of surface treatment on the structure and properties of para-aramid fibers by phosphoric acid. Fibers and Polymers 14(1):59–64

    Article  CAS  Google Scholar 

  • Zhao H, Zhang M, Zhang S, Lu J (2012) Influence of fiber characteristics and manufacturing process on the structure and properties of aramid paper. Polym Plast Technol Eng 51(2):134–139

    Article  CAS  Google Scholar 

  • Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos Part B 101:31–45

    Article  CAS  Google Scholar 

  • Zhu J, Cao W, Yue M, Hou Y, Han J, Yang M (2015) Strong and stiff aramid nanofiber/carbon nanotube nanocomposites. ACS Nano 9(3):2489–2501

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely appreciated the financial support from the National Key Research and Development Plan (2016YFB0303304), Shaanxi Overall Planning Innovative Engineering Project of Science and Technology (2016KTCQ01-87), and the Scientific Research Funding of Shaanxi University of Science and Technology (BJ12-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Hu, W., Xie, F. et al. Highly improved mechanical strength of aramid paper composite via a bridge of cellulose nanofiber. Cellulose 24, 2827–2835 (2017). https://doi.org/10.1007/s10570-017-1315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1315-9

Keywords

Navigation