Skip to main content
Log in

Effect of surface treatment on the structure and properties of para-aramid fibers by phosphoric acid

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The surface of para-aramid fiber was modified by phosphoric acid solutions (H3PO4) based on an orthogonal experimental design and analysis method. Statistical results indicate that treatment temperature is the most significant variable in the modification processing, while treatment time was the least important factor. The structure and morphology of the modified fiber were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction instrument (XRD), and scanning electron microscope (SEM). The results showed that some polar groups were introduced into the molecular structure of aramid fibers and the physical structure of the treated fibers was not etched obviously. The interfacial properties of aramid fiber/epoxy composites were investigated by the single fiber pull-out test (SFP), and the mechanical properties of aramid fibers were investigated by the tensile strength test. The results showed that the interfacial shear strength (IFSS) of aramid/epoxy composites was remarkably improved and the breaking strength of aramid fibers was not affected appreciably after surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Day, K. D. Hewson, and P. A. Lovell, Compos. Sci. Technol., 62, 153 (2002).

    Article  CAS  Google Scholar 

  2. C. Y. Yue, G. X. Sui, and H. C. Looi, Compos. Sci. Technol., 60, 421 (2000).

    Article  CAS  Google Scholar 

  3. R. J. Young, D. J. Bannister, A. J. Cervenka, and I. Ahmad, J. Mater. Sci., 35, 1939 (2000).

    Article  CAS  Google Scholar 

  4. M. G. Dobb, D. J. Johnson, and B. P. Saville, J. Polym. Sci. Pol. Chem., 15, 2201 (1997).

    Google Scholar 

  5. W. F. McDonald and M. W. Urban, Polym. Mater. Sci. Eng., 59, 306 (1988).

    CAS  Google Scholar 

  6. R. Benrashid and C. Tesoro Giuliana, Text. Res. J., 60, 334 (1990).

    Article  CAS  Google Scholar 

  7. E. M. Kim and J. Jang, Fiber. Polym., 11, 677 (2010).

    Article  CAS  Google Scholar 

  8. L. M. Plawky and W. Michaeli, J. Mater. Sci., 31, 6043 (1996).

    Article  CAS  Google Scholar 

  9. K. Kuepper and P. Schwartz, J. Adhes. Sci. Technol., 5, 165 (1991).

    Article  CAS  Google Scholar 

  10. D. Knittel, W. Kesting, and E. Schollmeyer, Polym. Int., 43, 231 (1997).

    Article  CAS  Google Scholar 

  11. M. Mori, Y. Uyama, and Y. Ikada, Polymer, 35, 5336 (1994).

    Article  CAS  Google Scholar 

  12. F. Poncin-Epaillard, B. Chevet, and J. C. Brosse, J. Appl. Polym. Sci., 52, 1047 (1994).

    Article  CAS  Google Scholar 

  13. J. Maity, C. Jacob, C. K. Das, S. Alam, and R. P. Singh, Composites Part A, 39, 825 (2008).

    Article  Google Scholar 

  14. T. Ai, R. M. Wang, and W. Y. Zhou, Polym. Compos., 28, 412 (2007).

    Article  CAS  Google Scholar 

  15. G. N. Fan, J. C. Zhao, Y. Q. Zhang, and Z. Guo, Polym. Bull., 56, 507 (2006).

    Article  CAS  Google Scholar 

  16. T. M. Liu, Y. S. Zheng, and J. Hu, Polym. Bull., 66, 259 (2011).

    Article  CAS  Google Scholar 

  17. R. Park and J. Jang, Compos. Sci. Technol., 58, 1621 (2004).

    Article  Google Scholar 

  18. G. Derombise, L. V. Van Schoors, M. Messou, and P. Davies, J. Appl. Polym. Sci., 117, 888 (2010).

    Article  CAS  Google Scholar 

  19. A. Abu Obaid, J. M. Deitzel, J. W. Gillespie, and J. Q. Zheng, J. Compos. Mater., 45, 1217 (2011).

    Article  Google Scholar 

  20. F. Guo, W. M. Liu, F. H. Su, and H. J. Zhang, Tribol. Int., 42, 243 (2009).

    Article  CAS  Google Scholar 

  21. M. Su, A. Gu, G. Z. Liang, and L. Yuan, Appl. Surf. Sci., 257, 3158 (2011).

    Article  CAS  Google Scholar 

  22. Z. G. Jia, Y. L. Wang, and Y. Z. Wan, Fiber Reinforced Plastics/Composites, 5, 20 (2004).

    Google Scholar 

  23. G. Li, C. Zhang, Y. Wang, P. Li, and S. Ryu, Compos. Sci. Technol., 68, 3208 (2008).

    Article  CAS  Google Scholar 

  24. T. K. Lin, S. J. Wu, J. G. Lai, and S. S. Shyu, Compos. Sci. Technol., 60, 1873 (2000).

    Article  CAS  Google Scholar 

  25. R. Benrashid and G. C. Tesoro, Text. Res. J., 60, 334 (1990).

    Article  CAS  Google Scholar 

  26. M. E. G. Mosquera, M. Jamond, A. Martinez-Alosno, and J. M. D. Tascon, Chem. Mater., 6, 1918 (1994).

    Article  CAS  Google Scholar 

  27. A. Castro-Muñiz, A. Martínez-Alonso, and M. D. Juan, Carbon, 46, 985 (2008).

    Article  Google Scholar 

  28. R. Mahmoud and D. Charles, Polym. Compos., 27, 129 (2006).

    Article  Google Scholar 

  29. A. B. Coffey, C. M. O’Bradaigh, and R. J. Young, J. Mater. Sci., 42, 8053 (2007).

    Article  CAS  Google Scholar 

  30. J. Kalantar and L. T. Drzal, J. Mater. Sci., 25, 4186 (1990).

    Article  CAS  Google Scholar 

  31. A. A. Leal, J. M. Deitzel, S. H. McKnight, and J. W. Gillespie Jr., Polymer, 50, 1228 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J. Effect of surface treatment on the structure and properties of para-aramid fibers by phosphoric acid. Fibers Polym 14, 59–64 (2013). https://doi.org/10.1007/s12221-013-0059-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0059-x

Keywords

Navigation