Skip to main content
Log in

Bionanocomposite regenerated cellulose/single-walled carbon nanotube films prepared using ionic liquid solvent

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Electrically conductive regenerated cellulose/single-walled carbon nanotube (RC/CNT) bionanocomposite films were fabricated using an environmentally benign ionic liquid, 1-ethyl-3-methylimidazolium chloride (EMIMCl). CNTs were well dispersed in EMIMCl by employing ultrasonication prior to solution casting. The films were characterized by X-ray diffraction analysis, field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Introduction of CNTs greatly improved the tensile strength and Young’s modulus of the bionanocomposite films, without compromising their elongation at break. Homogeneous dispersion of CNTs was confirmed by FESEM and TEM micrographs. The bionanocomposites exhibited a rapid insulator to conductor transition at CNT content as low as 0.75 wt%. Incorporation of CNTs also enhanced the thermal stability, oxygen barrier properties, as well as water absorption resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adelnia H, Bidsorkhi HC, Ismail A, Matsuura T (2015) Gas permeability and permselectivity properties of ethylene vinyl acetate/sepiolite mixed matrix membranes. Sep Purif Technol 146:351–357

    Article  CAS  Google Scholar 

  • Amiralian N, Annamalai PK, Memmott P, Martin DJ (2015) Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose 22:2483–2498. doi:10.1007/s10570-015-0688-x

    Article  Google Scholar 

  • Azubuike CP, Rodríguez H, Okhamafe AO, Rogers RD (2012) Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose 19:425–433. doi:10.1007/s10570-011-9631-y

    Article  CAS  Google Scholar 

  • Baseghi S, Garmabi H, Gavgani JN, Adelnia H (2015) Lightweight high-density polyethylene/carbonaceous nanosheets microcellular foams with improved electrical conductivity and mechanical properties. J Mater Sci 50:4994–5004. doi:10.1007/s10853-015-9048-3

    Article  CAS  Google Scholar 

  • Bidsorkhi HC, Adelnia H, Naderi N, Moazeni N, Mohamad Z (2015a) Ethylene vinyl acetate copolymer nanocomposites based on (un) modified sepiolite: flame retardancy, thermal, and mechanical properties Polymer Composites. doi:10.1002/pc.23695

  • Bidsorkhi HC, Adelnia H, Pour RH, Soheilmoghaddam M (2015b) Preparation and characterization of ethylene-vinyl acetate/halloysite nanotube nanocomposites. J Mater Sci 50:3237–3245

    Article  CAS  Google Scholar 

  • Chanzy H, Peguy A, Chaunis S, Monzie P (1980) Oriented cellulose films and fibers from a mesophase system. J Polym Sci Polym Phys Ed 18:1137–1144. doi:10.1002/pol.1980.180180517

    Article  CAS  Google Scholar 

  • Chivrac F, Pollet E, Schmutz M, Avérous L (2010) Starch nano-biocomposites based on needle-like sepiolite clays. Carbohydr Polym 80:145–153. doi:10.1016/j.carbpol.2009.11.004

    Article  CAS  Google Scholar 

  • Cochet M et al (2001) Synthesis of a new polyaniline/nanotube composite: polymerisation and charge transfer through site–selective interaction. Chem Commun. doi:10.1039/B104009J

    Google Scholar 

  • de Freitas JN, Maubane MS, Bepete G, van Otterlo WAL, Coville NJ, Nogueira AF (2013) Synthesis and characterization of single wall carbon nanotube-grafted poly(3-hexylthiophene) and their nanocomposites with gold nanoparticles. Synth Met 176:55–64. doi:10.1016/j.synthmet.2013.05.026

    Article  Google Scholar 

  • Deng M, Zhou Q, Du A, van Kasteren J, Wang Y (2009) Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions. Mater Lett 63:1851–1854. doi:10.1016/j.matlet.2009.05.064

    Article  CAS  Google Scholar 

  • Dufresne A, Paillet M, Putaux JL, Canet R, Carmona F, Delhaes P, Cui S (2002) Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. J Mater Sci 37:3915–3923. doi:10.1023/A:1019659624567

    Article  CAS  Google Scholar 

  • Erik TT, Prashant GK, Tsu-Wei C (2005) Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites. J Phys D Appl Phys 38:3962

    Article  Google Scholar 

  • Fischer S, Leipner H, Thümmler K, Brendler E, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10:227–236. doi:10.1023/A:1025128028462

    Article  CAS  Google Scholar 

  • Gavgani JN, Adelnia H, Zaarei D, Moazzami Gudarzi M (2016) Lightweight flexible polyurethane/reduced ultralarge graphene oxide composite foams for electromagnetic interference shielding. RSC Adv 6:27517–27527. doi:10.1039/C5RA25374H

    Article  CAS  Google Scholar 

  • Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632–6633. doi:10.1021/ja0351802

    Article  CAS  Google Scholar 

  • Hameed N, Church JS, Salim NV, Hanley TL, Amini A, Fox BL (2013) Dispersing single-walled carbon nanotubes in ionic liquids: a quantitative analysis. RSC Adv 3:20034–20039. doi:10.1039/C3RA42488J

    Article  CAS  Google Scholar 

  • Han D, Yan L, Chen W, Li W, Bangal PR (2011) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 83:966–972. doi:10.1016/j.carbpol.2010.09.006

    Article  CAS  Google Scholar 

  • Han J, Zhou C, French AD, Han G, Wu Q (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94:773–781. doi:10.1016/j.carbpol.2013.02.003

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762. doi:10.1016/s0079-6700(01)00022-3

    Article  CAS  Google Scholar 

  • Huang J, Rodrigue D (2014) The effect of carbon nanotube orientation and content on the mechanical properties of polypropylene based composites. Mater Des 55:653–663. doi:10.1016/j.matdes.2013.10.039

    Article  CAS  Google Scholar 

  • Jeong YG, Jeon GW (2013) Microstructure and performance of multiwalled carbon nanotube/m-aramid composite films as electric heating elements. ACS Appl Mater Interfaces 5:6527–6534

    Article  CAS  Google Scholar 

  • Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206. doi:10.1021/ma060261e

    Article  CAS  Google Scholar 

  • Kim D-H, Park S-Y, Kim J, Park M (2010) Preparation and properties of the single-walled carbon nanotube/cellulose nanocomposites using N-methylmorpholine-N-oxide monohydrate. J Appl Polym Sci 117:3588–3594. doi:10.1002/app.32247

    CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Li R, Zhang L, Xu M (2012) Novel regenerated cellulose films prepared by coagulating with water: structure and properties. Carbohydr Polym 87:95–100. doi:10.1016/j.carbpol.2011.07.023

    Article  CAS  Google Scholar 

  • Lin Y et al (2004) Advances toward bioapplications of carbon nanotubes. J Mater Chem 14:527–541. doi:10.1039/B314481J

    Article  CAS  Google Scholar 

  • Liu H et al (2016) Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydr Polym 136:1379–1385. doi:10.1016/j.carbpol.2015.09.085

    Article  CAS  Google Scholar 

  • Man Z, Muhammad N, Sarwono A, Bustam M, Vignesh Kumar M, Rafiq S (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19:726–731. doi:10.1007/s10924-011-0323-3

    Article  CAS  Google Scholar 

  • McCormick CL, Callais PA (1987) Derivatization of cellulose in lithium chloride and N-N-dimethylacetamide solutions. Polymer 28:2317–2323. doi:10.1016/0032-3861(87)90393-4

    Article  CAS  Google Scholar 

  • Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 93:628–634. doi:10.1016/j.carbpol.2013.01.035

    Article  CAS  Google Scholar 

  • Mohammadi M, Foroutan M (2013) Mixture of ionic liquid and carbon nanotubes: comparative studies of the structural characteristics and dispersion of the aggregated non-bundled and bundled carbon nanotubes. Phys Chem Chem Phys 15:2482–2494. doi:10.1039/C2CP43522E

    Article  CAS  Google Scholar 

  • Nehls I, Lukanoff B, Philipp B, Zschunke A (1983) 13C-NMR-untersuchungen an cellulose in verschiedenen lösungsmitteln. Acta Polym 34:105–108. doi:10.1002/actp.1983.010340208

    Article  CAS  Google Scholar 

  • Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56. doi:10.1016/j.apcata.2009.10.008

    Article  CAS  Google Scholar 

  • Oya T, Ogino T (2008) Production of electrically conductive paper by adding carbon nanotubes. Carbon 46:169–171. doi:10.1016/j.carbon.2007.10.027

    Article  CAS  Google Scholar 

  • Polo-Luque ML, Simonet BM, Valcárcel M (2013) Functionalization and dispersion of carbon nanotubes in ionic liquids. TrAC Trends Anal Chem 47:99–110. doi:10.1016/j.trac.2013.03.007

    Article  CAS  Google Scholar 

  • Röder T, Morgenstern B (1999) The influence of activation on the solution state of cellulose dissolved in N-methylmorpholine-N-oxide-monohydrate. Polymer 40:4143–4147. doi:10.1016/S0032-3861(98)00674-0

    Article  Google Scholar 

  • Sanchez-Garcia MD, Lagaron JM, Hoa SV (2010) Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers. Compos Sci Technol 70:1095–1105. doi:10.1016/j.compscitech.2010.02.015

    Article  CAS  Google Scholar 

  • Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Soheilmoghaddam M, Wahit MU, Mahmoudian S, Hanid NA (2013) Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid. Mater Chem Phys 141:936–943. doi:10.1016/j.matchemphys.2013.06.029

    Article  CAS  Google Scholar 

  • Soheilmoghaddam M, Pasbakhsh P, Wahit MU, Bidsorkhi HC, Pour RH, Whye WT, De Silva RT (2014a) Regenerated cellulose nanocomposites reinforced with exfoliated graphite nanosheets using BMIMCL ionic liquid. Polymer 55:3130–3138. doi:10.1016/j.polymer.2014.05.021

    Article  CAS  Google Scholar 

  • Soheilmoghaddam M, Sharifzadeh G, Pour RH, Wahit MU, Whye WT, Lee XY (2014b) Regenerated cellulose/β-cyclodextrin scaffold prepared using ionic liquid. Mater Lett 135:210–213. doi:10.1016/j.matlet.2014.07.169

    Article  CAS  Google Scholar 

  • Soheilmoghaddam M, Wahit MU, Tuck Whye W, Ibrahim Akos N, Heidar Pour R, Ali Yussuf A (2014c) Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent. Carbohydr Polym. doi:10.1016/j.carbpol.2014.02.085

    Google Scholar 

  • Soheilmoghaddam M, Wahit MU, Yussuf AA, Al-Saleh MA, Whye WT (2014d) Characterization of bio regenerated cellulose/sepiolite nanocomposite films prepared via ionic liquid. Polym Test 33:121–130. doi:10.1016/j.polymertesting.2013.11.011

    Article  CAS  Google Scholar 

  • Song H-Z, Luo Z-Q, Wang C-Z, Hao X-F, Gao J-G (2013) Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid. Carbohydr Polym 98:161–167. doi:10.1016/j.carbpol.2013.05.079

    Article  CAS  Google Scholar 

  • Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401. doi:10.1016/j.progpolymsci.2009.09.003

    Article  CAS  Google Scholar 

  • Star A et al (2001) Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed 40:1721–1725. doi:10.1002/1521-3773(20010504)40:9<1721:AID-ANIE17210>3.0.CO;2-F

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  • Venu Nadhan A, Varada Rajulu A, Li R, Jie C, Zhang L (2012) Properties of regenerated cellulose short fibers/cellulose green composite films. J Polym Environ 20:454–458. doi:10.1007/s10924-011-0398-x

    Article  CAS  Google Scholar 

  • Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424. doi:10.1039/B818061J

    Article  CAS  Google Scholar 

  • Wei B, Guan P, Zhang L, Chen G (2010) Solubilization of carbon nanotubes by cellulose xanthate toward the fabrication of enhanced amperometric detectors. Carbon 48:1380–1387. doi:10.1016/j.carbon.2009.12.028

    Article  CAS  Google Scholar 

  • Yan J, Jeong YG (2014) Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements. Appl Phys Lett 105:051907

    Article  Google Scholar 

  • Yun S, Kim J (2008) Characteristics and performance of functionalized MWNT blended cellulose electro-active paper actuator. Synth Met 158:521–526. doi:10.1016/j.synthmet.2008.03.025

    Article  CAS  Google Scholar 

  • Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He JS (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704. doi:10.1002/adma.200600442

    Article  CAS  Google Scholar 

  • Zhang Y, Huang R, Peng S, Ma Z (2015) MWCNTs/cellulose hydrogels prepared from NaOH/urea aqueous solution with improved mechanical properties. J Chem 2015:8. doi:10.1155/2015/413497

    Google Scholar 

  • Zhao J et al (2014) Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Carbohydr Polym 104:143–150. doi:10.1016/j.carbpol.2014.01.007

    Article  CAS  Google Scholar 

  • Zhou J, Li R, Liu S, Li Q, Zhang L, Zhang L, Guan J (2009) Structure and magnetic properties of regenerated cellulose/Fe3O4 nanocomposite films. J Appl Polym Sci 111:2477–2484. doi:10.1002/app.29236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Fundamental Research Grant Scheme (FRGS, vote no. GUP00H27 by Universiti Teknologi Malaysia) from the Ministry of Science, Technology, and Innovation (MOSTI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mat Uzir Wahit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soheilmoghaddam, M., Adelnia, H., Sharifzadeh, G. et al. Bionanocomposite regenerated cellulose/single-walled carbon nanotube films prepared using ionic liquid solvent. Cellulose 24, 811–822 (2017). https://doi.org/10.1007/s10570-016-1151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1151-3

Keywords

Navigation