Skip to main content
Log in

Poly (acrylic acid-co-acrylamide)/cellulose nanofibrils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocomposite hydrogels based on cellulose nanofibrils (CNFs) and poly(acrylic acid-co-acrylamide) were synthesized via in situ free radical polymerization in an aqueous suspension of CNFs. Effects of the inclusion of CNFs with content up to 10 wt% on the swelling properties at different pH and on the compression strength were investigated. The presence of CNFs was shown to strongly reinforce the hydrogel without deteriorating its elasticity. Nanocomposite hydrogel with a content of 10 % CNF supported respectively a strength and deformation about 13 and 2 times higher than that of the neat hydrogel. This effect was explained by the grafting of polymers on the CNFs surface, contributing to an increase in the effective crosslinking density, and improving the interfacial adhesion between polymer chains and CNFs. Moreover, the addition of CNF enhanced the water holding capacity of the hydrogel and caused the system to release urea simulating a fertilizer in a more controlled manner than that with neat hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdul Khalil HPS, Davoudpour Y, Islama MN, Mustapha A, Sudeshd K, Dungania R, Jawaid R (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  Google Scholar 

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  CAS  Google Scholar 

  • Buyanov AL, Gofman IV, Revel’skaya LG, Khripunov AK, Tkachenko AA (2010) Anisotropic swelling and mechanical behavior of composite bacterial cellulose–poly(acrylamide or acrylamide–sodium acrylate) hydrogels. J Mech Behav Biomed Mater 3:102–111

    Article  CAS  Google Scholar 

  • Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci Article ID 435073

  • Elouali FZ, Maschke U (2011) Kinetics and equilibrium swelling properties of hydrophilic polymethacrylate networks. Macromol Symp 303:71–77

    Article  CAS  Google Scholar 

  • Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583

    Article  CAS  Google Scholar 

  • Haraguchi K (2011) Stimuli-responsive nanocomposite gels. Colloid Polym Sci 289:455–473

    Article  CAS  Google Scholar 

  • Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanicals, optical and swelling/De-swelling properties. Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  • Huang T, Xu H, Jiao K, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19:1622

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    CAS  Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274

    Article  CAS  Google Scholar 

  • Rose S, Dizeux A, Narita T, Hourdet D, Marcellan A (2013) Time dependence of dissipative and recovery processes in nanohybrid hydrogels. Macromolecules 46:4095–4104

    Article  CAS  Google Scholar 

  • Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

  • Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396

    Article  CAS  Google Scholar 

  • Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174

    Article  Google Scholar 

  • Spagnol C, Rodrigues FHA, Pereira EGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87:2038–2045

    Article  CAS  Google Scholar 

  • Tomar RS, Gupta I, Singhal R, Nagpal AK (2007) Synthesis of poly (acrylamide-co-acrylic acid) based superabsorbent hydrogels: study of network parameters and swelling behaviour. Poly PlastTech Eng 46:481–488

    Article  CAS  Google Scholar 

  • Vartiainen J, Pöhler T, Sirola S, Pylkkänen L, Alenius H, Hokkanen J, Tapper U, Lahtinen P, Kapanen A, Putkisto K, Hiekkataipale P, Eronen P, Ruokolainen J, Laukkanen A (2011) Health and environmental safety aspects of nanofibrillated cellulose. Cellulose 18:775–786

    Article  CAS  Google Scholar 

  • Vikman M, Vartiainen J, Tsitko I, Korhonen P (2015) Biodegradability and compostability of nanofibrillar cellulose-based products. J Polym Environ 23:206–215

    Article  CAS  Google Scholar 

  • Watt GW, Chrisp JD (1954) Spectrophotometric method for determination of urea. Anal Chem 26:452–453

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC (2013a) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237

    Article  CAS  Google Scholar 

  • Yang J, Zhao JJ, Xu F, Son RC (2013b) Selective photoredox using graphene-based composite photocatalysts. ACS Appl Mater Interfaces 5:12960–12967

    Article  CAS  Google Scholar 

  • Yin L, Fei L, Cui F, Tang C, Yin C (2007) Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28:1258–1266

    Article  CAS  Google Scholar 

  • Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibrils: from strong materials to bioactive surfaces. J Renew Mater 3:195–211

    Article  Google Scholar 

  • Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353:116–123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Boufi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahfoudhi, N., Boufi, S. Poly (acrylic acid-co-acrylamide)/cellulose nanofibrils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties. Cellulose 23, 3691–3701 (2016). https://doi.org/10.1007/s10570-016-1074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1074-z

Keywords

Navigation