Skip to main content
Log in

Stimuli-responsive nanocomposite gels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A new class of polymer hydrogels, nanocomposite hydrogels (NC gels), consisting of a unique organic (polymer)/inorganic (clay) network structure, was synthesized by in situ free-radical polymerization in the presence of exfoliated clay nanoparticles in an aqueous system. The resulting NC gels overcame most of the disadvantages associated with chemically cross-linked hydrogels, such as mechanical fragility, structural heterogeneity, and slow de-swelling rate. By using thermo-sensitive poly(N-isopropylacrylamide) (PNIPA) as a constituent polymer, NC gels with remarkable mechanical, optical, and swelling properties as well as thermo-sensitivity were obtained. The various properties of NC gels, such as transparency, gel volume, cell culturing, and surface friction changed significantly in response to the temperature and surrounding conditions. All the excellent properties and new stimuli-responsive characteristics of NC gels are attributed to the unique PNIPA/clay network structure. The thermo-sensitivities and the transition temperature can largely be controlled by varying the clay content and by the addition of solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. McCormick CL (ed) (2000) Stimuli-responsive water soluble and amphiphilic polymers. ACS Symposium Series 780

  2. Kim J, Nayak S, Lyon LA (2005) Bioresponsive hydrogel microlenses. J Am Chem Soc 127:9588–9592

    Article  CAS  Google Scholar 

  3. Chang DP, Dolbow JE, Zauscher S (2007) Switchable friction of stimulus-responsive hydrogels. Langmuir 23:250–257

    Article  CAS  Google Scholar 

  4. Chan AW, Whitney RA, Neufeld RJ (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 10:609–616

    Article  CAS  Google Scholar 

  5. Tokarev I, Gopishetty V, Zhou J, Pita M, Motornov M, Katz E, Minko S (2009) Stimuli-responsive hydrogel membranes coupled with biocatalytic processes. ACS Appl Mater Interfaces 1:532–536

    Article  CAS  Google Scholar 

  6. Okano T, Bae YH, Jacobs H, Kim SW (1990) Thermally on–off switching polymers for drug permeation and release. J Control Release 11:255–265

    Article  CAS  Google Scholar 

  7. Stayton PS, Shimoboji T, Long C, Chilkoti A, Chen G, Harris JM, Hoffman AS (1995) Control of protein–ligand recognition using a stimuli-responsive polymer. Nature 378:472–474

    Article  CAS  Google Scholar 

  8. Cai W, Anderson EC, Gupta RB (2001) Separation of lignin from aqueous mixtures by ionic and nonionic temperature-sensitive hydrogels. Ind Eng Chem Res 40:2283–2288

    Article  CAS  Google Scholar 

  9. Matsumoto A, Yoshida R, Kataoka K (2004) Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 5:1038–1045

    Article  CAS  Google Scholar 

  10. Yamato M, Okano T (2004) Cell sheet engineering. Mater Today 7:42–47

    Article  CAS  Google Scholar 

  11. Matsukuma D, Yamamoto K, Aoyagi T (2006) Stimuli-responsive properties of N-isopropylacrylamide-based ultrathin hydrogel films prepared by photo-cross-linking. Langmuir 22:5911–5915

    Article  CAS  Google Scholar 

  12. Kretlow JD, Hacker MC, Klouda L, Ma BB, Mikos AG (2010) Synthesis and characterization of dual stimuli responsive macromers. Biomacromolecules 11:797–805

    Article  CAS  Google Scholar 

  13. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci A 2:1441–1455

    Article  CAS  Google Scholar 

  14. Cho EC, Lee J, Cho K (2003) Role of bound water and hydrophobic interaction in phase transition of poly(N-isopropylacrylamide) aqueous solution. Macromolecules 36:9929–9934

    Article  CAS  Google Scholar 

  15. Matsuo ES, Tanaka T (1988) Kinetics of discontinuous volume-phase transition of gels. J Chem Phys 89:1695–1703

    Article  CAS  Google Scholar 

  16. Annaka M, Motokawa K, Sasaki S, Nakahira T, Kawasaki H, Maeda H, Amo Y, Tominaga Y (2000) Salt-induced volume phase transition of poly(N-isopropylacrylamide) gel. J Chem Phys 113:5980–5985

    Article  CAS  Google Scholar 

  17. Otake K, Inomata H, Konno M, Saito S (1990) Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 23:283–289

    Article  CAS  Google Scholar 

  18. Takigawa T, Araki H, Takahashi K, Masuda T (2000) Effects of mechanical stress on the volume phase transition of poly(N-isopropylacrylamide) based polymer gels. J Chem Phys 113:7640–7645

    Article  CAS  Google Scholar 

  19. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  20. Okada K, Usuki A (2006) Twenty years of polymer–clay nanocomposites. Macromol Mater Eng 291:1449–1476

    Article  CAS  Google Scholar 

  21. Haraguchi K, Li HJ (2005) Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew Chem Int Ed 44:6500–6504

    Article  CAS  Google Scholar 

  22. Haraguchi K (2007) Nanocomposite gels: new advanced functional soft materials. Macromol Symp 256:120–130

    Article  CAS  Google Scholar 

  23. Haraguchi K (2008) Nanocomposite hydrogels. Curr Opin Solid State Mat Sci 11:47–54

    Article  Google Scholar 

  24. Fukasawa M, Sakai T, Chung UI, Haraguchi K (2010) Synthesis and mechanical properties of a nanocomposite gel consisting of a tetra-peg/clay network. Macromolecules 43:4370–4378

    Article  CAS  Google Scholar 

  25. Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrylamide) and clay. Macromolecules 35:10162–10171

    Article  CAS  Google Scholar 

  26. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N, N-dimethylacrylamide) and clay. Macromolecules 36:5732–5741

    Article  CAS  Google Scholar 

  27. Haraguchi K, Li HJ (2006) Mechanical properties and structure of polymer–clay nanocomposite gels with high clay content. Macromolecules 39:1898–1905

    Article  CAS  Google Scholar 

  28. Rosta L, von Gunten HR (1990) Light scattering characterization of laporite sols. J Colloid Interface Sci 134:397–406

    Article  CAS  Google Scholar 

  29. Haraguchi K, Li H-J, Matsuda K, Takehisa T, Elliot E (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA–clay nanocomposite hydrogels. Macromolecules 38:3482–3490

    Article  CAS  Google Scholar 

  30. Haraguchi K, Song L (2007) Microstructures formed in co-cross-linked networks and their relationships to the optical and mechanical properties of PNIPA/clay nanocomposite gels. Macromolecules 40:5526–5536

    Article  CAS  Google Scholar 

  31. Song L, Zhu M, Chen Y, Haraguchi K (2008) Surface-patterning of nanocomposite hydrogel film by direct replica molding and subsequent change in pattern size. Polym J 40:800–805

    Article  CAS  Google Scholar 

  32. Haraguchi K, Takada T (2010) Synthesis and characteristics of nanocomposite gels prepared by in situ photopolymerization in an aqueous system. Macromolecules 43:4294–4299

    Article  CAS  Google Scholar 

  33. Haraguchi K, Li HJ (2009) The effect of water content on the ultimate properties of rubbery nanocomposite gels. J Polym Sci B Polym Phys 47:2328–2340

    Article  CAS  Google Scholar 

  34. Haraguchi K, Li HJ (2004) Mechanical properties of nanocomposite hydrogels consisting of organic/inorganic networks and the effects of clay modification thereto. J Netw Poly Jpn 25:2–12

    CAS  Google Scholar 

  35. Miyazaki S, Endo H, Karino T, Haraguchi K, Shibayama M (2007) Gelation mechanism of poly (N-isopropyl acrylamide)–clay nanocomposite gels. Macromolecules 40:4287–4295

    Article  CAS  Google Scholar 

  36. Shibayama M, Suda J, Karino T, Okabe S, Takehisa T, Haraguchi K (2004) Structure and dynamics of poly (N-isopropylacrylamide)–clay nanocomposite gels. Macromolecules 37:9606–9612

    Article  CAS  Google Scholar 

  37. Miyazaki S, Karino T, Endo H, Haraguchi K, Shibayama M (2006) Clay concentration dependence of microstructure in deformed poly(N-isopropylacrylamide)–clay nanocomposite gels. Macromolecules 39:8112–8120

    Article  CAS  Google Scholar 

  38. Haraguchi K, Xu Y, Li G (2010) Molecular characteristics of poly(N-isopropylacrylamide) separated from nanocomposite gels by removal of clay from the polymer/clay network. Macromol Rapid Commun 31:718–723

    Article  CAS  Google Scholar 

  39. Xu Y, Li G, Haraguchi K (2010) Gel formation and molecular characteristics of poly(N-isopropylacrylamide)prepared by free-radical redox polymerization in aqueous solution. Macromol Chem Phys 211:977–987

    CAS  Google Scholar 

  40. Haraguchi K, Li HJ, Song L, Murata K (2007) Tunable optical and swelling/deswelling properties associated with control of the coil-to-globule transition of poly (N-isopropylacrylamide) in polymer–clay. Macromolecules 40:6973–6980

    Article  CAS  Google Scholar 

  41. Murata K, Haraguchi K (2007) Optical anisotropy in polymer–clay nanocomposite hydrogel and its change on uniaxial deformation. J Mater Chem 17:3385–3388

    Article  CAS  Google Scholar 

  42. Haraguchi K, Takada T (2005) Characteristic sliding frictional behavior on the surface of nanocomposite hydrogels consisting of organic–inorganic network structure. Macromol Chem Phys 206:1530–1540

    Article  CAS  Google Scholar 

  43. Haraguchi K, Li HJ, Okumura N (2007) Hydrogels with hydrophobic surfaces: abnormally high contact angles for water on pnipa nanocomposite hydrogels. Macromolecules 40:2299–2302

    Article  CAS  Google Scholar 

  44. Highlights R (2007) Love–hate relationship. Nature 446:350

    Article  Google Scholar 

  45. Haraguchi K, Li HJ, Song L (2008) Unusually high hydrophobicity and its changes observed on the newly-created surfaces of pnipa/clay nanocomposite hydrogels. J Colloid Interface Sci 326:41–50

    Article  CAS  Google Scholar 

  46. Haraguchi K, Matsuda M (2005) Spontaneous formation of characteristic layered morphologies in porous nanocomposites prepared from nanocomposite hydrogels. Chem Mater 17:931–934

    Article  CAS  Google Scholar 

  47. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 374:240–242

    Article  CAS  Google Scholar 

  48. Haraguchi K, Takehisa T, Ebato M (2006) Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 7:3267–3275

    Article  CAS  Google Scholar 

  49. Haraguchi K, Taniguchi S, Takehisa T (2005) Reversible force generation in a temperature-responsive nanocomposite hydrogel consisting of poly (N-isopropylacrylamide) and clay. Chem Phys Chem 6:238–241

    CAS  Google Scholar 

  50. Song L, Zhu M, Chen Y, Haraguchi K (2008) Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks. Macromol Chem Phys 209:1564–1575

    Article  CAS  Google Scholar 

  51. Haraguchi K, Li HJ, Song L (2007) The unique optical and physical properties of soft, transparent, stimulus-sensitive nanocomposite gels. Proc SPIE 6654:66540O-1-11

    Google Scholar 

  52. Inomata H, Goto S, Otake K, Saito S (1992) Effect of additives on phase transition of N-isopropylacrylamide gels. Langmuir 8:687–690

    Article  CAS  Google Scholar 

  53. Dhara D, Chatterji PR (2000) Swelling and deswelling pathways in non-ionic poly(N-isopropylacrylamide) hydrogels in presence of additives. Polymer 41:6133–6143

    Article  CAS  Google Scholar 

  54. Kokufuta E, Zhang YQ, Tanaka T, Maeda A (1993) Effects of surfactants on the phase transition of poly(N-isopropylacrylamide) gel. Macromolecules 26:1053–1059

    Article  CAS  Google Scholar 

  55. Kokufuta E, Nakaizumi S, Ito S, Tanaka T (1995) Uptake of sodium dodecylbenzenesulfonate by poly(N-isopropylacrylamide) gel and effect of surfactant uptake on the volume-phase transition. Macromolecules 28:1704–1708

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Education, Science, Sports, and Culture, Japan (Grant-in-Aid 20350109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutoshi Haraguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haraguchi, K. Stimuli-responsive nanocomposite gels. Colloid Polym Sci 289, 455–473 (2011). https://doi.org/10.1007/s00396-010-2373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2373-9

Keywords

Navigation