Skip to main content
Log in

Development of abamectin loaded lignocellulosic matrices for the controlled release of nematicide for crop protection

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Poor mobility of abamectin (Abm) in soil compromises its nematicide efficacy against nematode infestation. In the present work, four lignocellulosic materials (abaca, banana, softwood and hardwood) were fabricated into a handsheet matrix and characterized for loading and controlled release of Abm in a field-deployable matrix. The physical and chemical properties of different lignocellulosic matrices affected its function as a substrate for Abm loading as well as its ability to wrap around the plant seedlings during application. Incorporating Abm into lignocellulosic matrices by physisorption resulted in active matrices with distinct release rates for Abm. The rate of release is shown to be dependent on the matrix’s chemical compositions of cellulose, hemicellulose and lignin and the corresponding distribution of each component within the matrix. The higher lignin content (ca. 10.2 %) in the bulk of lignocellulosic matrix, e.g. mechanical-pulped banana matrix, enabled the slow and sustained release of loaded Abm; providing an efficacious crop protection around the growing tomato seedlings in the root knot nematode-infected soil. Conversely, the decreased lignin content (ca. 3.4 or 4.8 %) in other lignocellulosic matrices due to kraft-pulping and bleaching led to a relative quick release of loaded Abm thus compromising the long-term delivery of Abm to the growing plant root.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury EG, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26(8):909–915

    Article  CAS  Google Scholar 

  • Alves CM, Reis RL, Hunt JA (2010) The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials. Soft Matter 6(17):4135–4143

    Article  CAS  Google Scholar 

  • ASTM International (2011) ASTM D3787—07(2011) Standard test Method for Bursting Strength of Textiles-Constant-Rate-of-Traverse (CRT) Ball Burst Test

  • Barr CJ, Hanson LB, Click K, Perrotta G, Schall CA (2014) Influence of ionic-liquid incubation temperature on changes in cellulose structure, biomass composition, and enzymatic digestibility. Cellulose 21:973–982

    Article  CAS  Google Scholar 

  • Biermann CJ (1993) Handbook of pulping and papermaking. San Diego, USA

    Google Scholar 

  • Cabrera JA, Menjivar RD, Dababat A-FA, Sikora RA (2013) Properties and nematicide performance of avermectins. J Phytopathol 161(2):65–69

    Article  CAS  Google Scholar 

  • Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA (2015) Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl Mater Interfaces 7:9546–9553

    Article  CAS  Google Scholar 

  • Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60(1):165–182

    Article  CAS  Google Scholar 

  • Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12(4):933–941

    Article  CAS  Google Scholar 

  • Chukwudebe AC, Feely WF, Burnett TJ, Crouch LS, Wislocki PG (1996) Uptake of emamectin benzoate residues from soil by rotational crops. J Agric Food Chem 44(12):4015–4021

    Article  CAS  Google Scholar 

  • Colom X, Carrillo F, Nogués F, Garriga P (2003) Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stab 80(3):543–549

    Article  CAS  Google Scholar 

  • Cooper A, Oldinski RA, Ma H, Bryers JD (2013) Chitosan-based nanofibrous membranes for antibacterial filter applications. Carbohydr Polym 92(1):254–259

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2006) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    Article  CAS  Google Scholar 

  • del Río JC, Gutiérrez A (2006) Chemical composition of abaca (Musa textilis) leaf fibers used for manufacturing of high quality paper pulps. J Agric Food Chem 54(13):4600–4610

    Article  CAS  Google Scholar 

  • Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683

    Article  CAS  Google Scholar 

  • Dorris GM, Gray DG (1978) The surface analysis of paper and wood fibres by ESCA. II. Surface composition of mechanical pulps. Cellul Chem Technol 12:721–734

    CAS  Google Scholar 

  • Dorris GM, Gray DG (1979) The surface analysis of paper and wood fibres by ESCA (electron spectroscopy for chemical analysis). I. application to cellulose and lignin. Cellul Chem Technol 12(1):9–23

    Google Scholar 

  • Evans R, Newman RH, Roick UC, Suckling ID, Wallis AFA (1995) Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, X-ray diffraction and solid state NMR results. Holzforschung 49(6):498–504

    Article  CAS  Google Scholar 

  • Fernández-Pérez M, González-Pradas E, Ureña-Amate MD, Wilkins RM, Lindup I (1998) Controlled release of imidacloprid from a lignin matrix: water release kinetics and soil mobility study. J Agric Food Chem 46(9):3828–3834

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14(4):241–266

    Article  CAS  Google Scholar 

  • Gruber VF, Halley BA, Hwang SC, Ku CC (1990) Mobility of avermectin B1a in soil. J Agric Food Chem 38(3):886–890

    Article  CAS  Google Scholar 

  • Haqiopol C, Johnston JW (2011) Chemistry of modern papermaking. CRC Press, Boca Raton

    Google Scholar 

  • Holden-Dye L, Walker RJ (2007) Anthelmintic drugs WormBook, ed. The C. elegans research community, WormBook. doi:10.1895/wormbook.1.143.1, http://www.wormbook.org

  • Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenergy Res 5(4):1043–1066

    Article  CAS  Google Scholar 

  • Indira KN, Grohens Y, Baley C, Thomas S, Joseph K, Pothen LA (2011) Adhesion and wettability characteristics of chemically modified banana fibre for composite manufacturing. J Adhes Sci Technol 25(13):1515–1538

    Article  CAS  Google Scholar 

  • Johnson RE Jr, Dettre RH, Brandreth DA (1977) Dynamic contact angles and contact angle hysteresis. J Colloid Interface Sci 62(2):205–212

    Article  CAS  Google Scholar 

  • Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272

    Article  CAS  Google Scholar 

  • Khan MA, Ashraf SM, Malhotra VP (2004) Development and characterization of a wood adhesive using bagasse lignin. Int J Adhes Adhes 24(6):485–493

    Article  CAS  Google Scholar 

  • Kleingartner JA, Srinivasan S, Mabry JM, Cohen RE, McKinley GH (2013) Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces. Langmuir 29(44):13396–13406

    Article  CAS  Google Scholar 

  • Koljonen K, Österberg M, Kleen M, Fuhrmann A, Stenius P (2004) Precipitation of lignin and extractives on kraft pulp: effect on surface chemistry, surface morphology and paper strength. Cellulose 11(2):209–224

    Article  CAS  Google Scholar 

  • Koubaa A, Riedl B, Koran Z (1996) Surface analysis of press dried-CTMP paper samples by electron spectroscopy for chemical analysis. J Appl Polym Sci 61(3):545–552

    Article  CAS  Google Scholar 

  • Krogh KA, Søeborg T, Brodin B, Halling-Sørensen B (2008) Sorption and mobility of ivermectin in different soils. J Environ Qual 37(6):2202–2211

    Article  CAS  Google Scholar 

  • Li K, Fu S, Zhan H, Zhan Y, Lucia L (2010) Analysis of the chemical composition and morphological structural of banana pseudo-stem. BioResources 5(2):576–585

    CAS  Google Scholar 

  • Ma H, Darmawan E, Zhang M, Zhang L, Bryers JD (2013) Development of a poly (ether urethane) system for the controlled release of two novel anti-biofilm agents based on gallium or zinc and its efficacy to prevent bacterial biofilm formation. J Control Release 172(3):1035–1044

    Article  CAS  Google Scholar 

  • Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1(2):105–114

    Article  CAS  Google Scholar 

  • Mascheroni S, Capretti G, Limbo S, Piergiovanni L (2012) Study of cellulose–lysozyme interactions aimed to a controlled release system for bioactives. Cellulose 19(6):1855–1866

    Article  CAS  Google Scholar 

  • Maximova N, Österberg M, Koljonen K, Stenius P (2001) Lignin adsorption on cellulose fibre surfaces: effect on surface chemistry, surface morphology and paper strength. Cellulose 8(2):113–125

    Article  CAS  Google Scholar 

  • Mulder WJ, Gosselink RJA, Vingerhoeds MH, Harmsen PFH, Eastham D (2011) Lignin based controlled release coatings. Ind Crops Prod 34(1):915–920

    Article  CAS  Google Scholar 

  • Ornaghi H Jr, Poletto M, Zattera A, Amico S (2013) Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose 21(1):1–12

    Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2000) Dynamic wettability study on the functionalized PEGylated layer on a polylactide surface constructed by the coating of aldehyde-ended poly(ethylene glycol) (PEG)/polylactide (PLA) block copolymer. Sci Technol Adv Mater 1(1):21–29

    Article  CAS  Google Scholar 

  • Penn LS, Miller B (1980) A study of the primary cause of contact angle hysteresis on some polymeric solids. J Colloid Interface Sci 78(1):238–241

    Article  CAS  Google Scholar 

  • Punyamurthy R, Sampathkumar D, Srinivasa CV, Bennehalli B (2012) Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources 7(3):3515–3524

    CAS  Google Scholar 

  • Putter I, Mac Connell JG, Preiser FA, Haidri AA, Ristich SS, Dybas RA (1981) Avermectin: novel insecticides, acaricides and nematicides from a soil microorganism. Experientia 37(9):963–964

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Singh L, Bandyopadhyay TK (2013) Handmade paper from banana stem. Int J Sci Eng Res 4(7):2074–2079

    Google Scholar 

  • Tang CY, Kwon Y-N, Leckie JO (2007) Probing the nano- and micro-scales of reverse osmosis membranes—a comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. J Membr Sci 287(1):146–156

    Article  CAS  Google Scholar 

  • TAPPI (2008) Forming handsheets for physical tests of pulp. Test Method. Retrieved 15 April 2008

  • Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied x-ray diffraction (WAXD): comparison between measurement techniques. Lenzing Ber 89:118–131

    CAS  Google Scholar 

  • The American Phytopathological Society (2005) Fungicide and nematicide tests. Seed treatment vs. in-furrow applied nematicides and insecticides for reniform nematode and thrips control. Report 61:N009

    Google Scholar 

  • The Paperwright (2014) Moulds and deckles. http://users.trytel.com/~brittq/mould.htm. Accessed 02 Feb 2014

  • Thomas S, Paul SA, Pothan LA, Deepa B (2011) Natural fibres: structure, properties and applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 3–42

    Chapter  Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Xiao LP, Sun ZJ, Shi ZJ, Xu F, Sun RC (2011) Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. BioResources 6(2):1576–1598

    CAS  Google Scholar 

  • Xiao Z, Li Y, Wu X, Qi G, Li N, Zhang K, Wang D, Sun XS (2013) Utilization of sorghum lignin to improve adhesion strength of soy protein adhesives on wood veneer. Ind Crops Prod 50:501–509

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  CAS  Google Scholar 

  • Yu P (2011) Microprobing the molecular spatial distribution and structural architecture of feed-type sorghum seed tissue (Sorghum bicolor L.) using the synchrotron radiation infrared microspectroscopy technique. J Synchrotron Radiat 18(5):790–801

    Article  CAS  Google Scholar 

  • Yuan Y, Lee TR (2013) Contact angle and wetting properties. In: Bracco G, Holst B (eds) Surface science techniques. Springer, Berlin, pp 3–34

    Chapter  Google Scholar 

  • Zhang YHP (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 35(5):367–375

    Article  CAS  Google Scholar 

  • Zhong L, Fu S, Li F, Zhen H (2010) Chlorine dioxide treatment of sisal fiber: surface lignin and its influences on fiber surface characteristics and interafacial behavior of sisal fiber/phenolic resin composites. BioResources 5(4):2431–2446

    Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from the Bill and Melinda Gates Foundation (PIs: J. A. Willoughby and S. A. Lommel) through the Grand Challenges Explorations initiative and USDA NIFA Agricultural System and Technology, Nanotechnology for Agricultural and Food System (PIs: S. A. Lommel, J. A. Willoughby, T. L. Sit, and C. H. Opperman). We gratefully acknowledge their support. We would also like to thank the NC State University College of Textiles and College of Agricultural and Life Sciences’ North Carolina Agricultural Research Station for providing their facilities and support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Willoughby.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Guenther, R.H., Sit, T.L. et al. Development of abamectin loaded lignocellulosic matrices for the controlled release of nematicide for crop protection. Cellulose 23, 673–687 (2016). https://doi.org/10.1007/s10570-015-0817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0817-6

Keywords

Navigation