Skip to main content
Log in

Comparative evaluation of the action of two different endoglucanases. Part II: On a biobleached acid sulphite pulp

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A TCF sulphite pulp, bleached at the laboratory scale with a laccase–violuric acid system and complemented with a pressurized hydrogen peroxide stage, was treated with two endoglucanases, one obtained from Paenibacillus barcinonensis (B) and the other one produced from Cerrena unicolor (F) to improve cellulose reactivity. The treated pulps were evaluated in terms of brightness, viscosity, α-cellulose, water retention value, fibre morphology, Fock solubility, NMR and carbohydrate composition of pulps and liquors. Results revealed that both endoglucanases improved cellulose reactivity, albeit in a different way; thus, B caused no scissions in the cellulose chain and no significant reduction in fibre length, whereas F decreased viscosity and shortened fibre length, leading to lower reactivity value. The liquor composition of soluble carbohydrates released by the enzymatic treatments revealed the B had a processive mode of action since short oligosaccharides, cellobiose and glucose, were obtained. F hydrolysed, from high to low concentration, cellobiose, glucose and cellotriose. Importantly, environmentally friendly dissolving pulp with 90 % Fock solubility was obtained, combining two enzymatic treatments: a laccase–mediator system and then a cellulase from P. barcinonensis (B). In order to improve the quality of final dissolving pulp, a pulp purification step was introduced before the B endoglucanase treatment. The cold caustic extraction lead to reduce the amount of hemicelluloses by 42 % with respect to biobleached pulp, but Fock solubility was also reduced. However, complementing the purification step with F treatment, reduced the amount of hemicelluloses but also improved Fock solubility by 17 %, although some presence of cellulose II was detected by NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Schema 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CCE:

Cold caustic extraction

CS:

Chain scission

DP:

Degree of polymerization

EG:

Endoglucanase

K_CCE:

Control treatment with buffer acetate + cold caustic extraction

L:

Laccase–mediator treatment

L_B120:

Biobleached pulp + B endoglucanase at 120 U/g

L_CCE:

Biobleached pulp + cold caustic extraction

L_CCE_B120:

Biobleached pulp + cold caustic extraction + B endoglucanase at 120 U/g

L_CCE_F12:

Biobleached pulp + cold caustic extraction + F endoglucanase at 12 U/g

L_F12:

Biobleached pulp + F endoglucanase at 12 U/g

L_K:

Biobleached pulp + control treatment with buffer acetate

PO:

Hydrogen peroxide reinforced with pressurized oxygen

TCF:

Totally chlorine free

n.d.:

Not determined

odp:

Oven dried pulp

VA:

Violuric acid

WRV:

Water retention value

13C-CP/MAS NMR:

Solid state cross polarization/magic angle spinning carbon 13 nuclear magnetic resonance

References

  • Arnoul-Jarriault B, Lachenal D, Chirat C, Heux L (2014) Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment. Ind Crops Prod. doi:10.1016/j.indcrop.2014.09.051

    Google Scholar 

  • Bouchard J, Morelli E, Berry RM (2000) Gas phase addition of solvent to ozone bleaching of kraft pulp. J Pulp Pap Sci 26:30–35

    CAS  Google Scholar 

  • Cadena EM, Chriac AI, Javier Pastor FI et al (2010) Use of cellulases and recombinant cellulose binding domains for refining TCF kraft pulp. Biotechnol Prog 26:960–967. doi:10.1002/btpr.411

    CAS  Google Scholar 

  • Cairns JRK, Esen A (2010) Beta-glucosidases. Cell Mol Life Sci 67:3389–3405. doi:10.1007/s00018-010-0399-2

    Article  Google Scholar 

  • Chiriac AI, Cadena EM, Vidal T et al (2010) Engineering a family 9 processive endoglucanase from Paenibacillus barcinonensis displaying a novel architecture. Appl Microbiol Biotechnol 86:1125–1134. doi:10.1007/s00253-009-2350-8

    Article  CAS  Google Scholar 

  • Chiriac AI, Pastor FIJ, Popa VI et al (2013) Changes of supramolecular cellulose structure and accessibility induced by the processive endoglucanase Cel9B from Paenibacillus barcinonensis. Cellulose 21:203–219. doi:10.1007/s10570-013-0118-x

    Article  Google Scholar 

  • Ek M, Gellerstedt G, Henriksson G (2009) Pulp and paper chemistry and technology. In: Wood chemistry and wood biotechnology, vol 1. pp 247–249

  • Engström A-C, Ek M, Henriksson G (2006) Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase. Biomacromolecules 7:2027–2031

    Article  Google Scholar 

  • Evans R, Wallis AFA (1987) Comparison of cellulose molecular weights determined by high performance size exclusion chromatography and viscometry. In: 4th International Symposium on Wood and Pulping Chemistry, pp 201–205

  • FAO (2012) FAO. Food and Agriculture Organitzation of the United Nations

  • Fock W (1959) A modified method for determining the reactivity of viscose-grade dissolving pulps. Papier 13:92–95

    CAS  Google Scholar 

  • Garcia-Ubasart J, Torres AL, Vila C et al (2013) Biomodification of cellulose flax fibers by a new cellulase. Ind Crops Prod 44:71–76. doi:10.1016/j.indcrop.2012.10.019

    Article  CAS  Google Scholar 

  • Gehmayr V, Sixta H (2012) Pulp properties and their influence on enzymatic degradability. Biomacromolecules 13:645–651

    Article  CAS  Google Scholar 

  • Gehmayr V, Schild G, Sixta H (2011) A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application. Cellulose 18:479–491. doi:10.1007/s10570-010-9483-x

    Article  CAS  Google Scholar 

  • Glasser WG, Atalla RH, Blackwell J et al (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598. doi:10.1007/s10570-012-9691-7

    Article  CAS  Google Scholar 

  • Henriksson G, Christiernin M, Agnemo R (2005) Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp. J Ind Microbiol Biotechnol 32:211–214. doi:10.1007/s10295-005-0220-7

    Article  CAS  Google Scholar 

  • Ibarra D, Köpcke V, Ek M (2010a) Behavior of different monocomponent endoglucanases on the accessibility and reactivity of dissolving-grade pulps for viscose process. Enzyme Microb Technol 47:355–362. doi:10.1016/j.enzmictec.2010.07.016

    Article  CAS  Google Scholar 

  • Ibarra D, Köpcke V, Larsson PT et al (2010b) Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Bioresour Technol 101:7416–7423. doi:10.1016/j.biortech.2010.04.050

    Article  CAS  Google Scholar 

  • Irwin D, Shin DH, Zhang S et al (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180:1709–1714

    CAS  Google Scholar 

  • Janzon R, Puls J, Bohn A et al (2008a) Upgrading of paper grade pulps to dissolving pulps by nitren extraction: yields, molecular and supramolecular structures of nitren extracted pulps. Cellulose 15:739–750. doi:10.1007/s10570-008-9224-6

    Article  CAS  Google Scholar 

  • Janzon R, Saake B, Puls J (2008b) Upgrading of paper-grade pulps to dissolving pulps by nitren extraction: properties of nitren extracted xylans in comparison to NaOH and KOH extracted xylans. Cellulose 15:161–175. doi:10.1007/s10570-007-9154-8

    Article  CAS  Google Scholar 

  • Köpcke V, Ibarra D, Ek M (2008) Increasing accessibility and reactivity of paper grade pulp by enzymatic treatment for use as dissolving pulp. Nord Pulp Pap Res J 23:363–368

    Article  Google Scholar 

  • Krässig HA (1993) Cellulose-Structure, Accessibility and Reactivity, vol 11. Gordon and Breach Science Publisher, Yverdon, p 376

  • Kvarnlöf N, Germgård U, Jönsson LJ, Söderlund C-A (2006) Enzymatic treatment to increase the reactivity of a dissolving pulp for viscose preparation. Appita J 59:242–246

    Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81. doi:10.1016/j.molliq.2010.04.016

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi:10.1128/MMBR.66.3.506-577.2002

    Article  CAS  Google Scholar 

  • Medronho B, Romano A, Miguel MG et al (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587. doi:10.1007/s10570-011-9644-6

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  • Quintana E, Valls C, Vidal T, Roncero MB (2013) An enzyme-catalysed bleaching treatment to meet dissolving pulp characteristics for cellulose derivatives applications. Bioresour Technol 148:1–8. doi:10.1016/j.biortech.2013.08.104

    Article  CAS  Google Scholar 

  • Quintana E, Valls C, Barneto AG et al (2015) Studying the effects of laccase treatment in a softwood dissolving pulp: cellulose reactivity and crystallinity. Carbohydr Polym 119:53–61. doi:10.1016/j.carbpol.2014.11.019

    Article  CAS  Google Scholar 

  • Quintana E, Valls C, Vidal T, Roncero MB Comparative evaluation of the action of two different endoglucanases. Part I: On a fully bleached, commercial acid sulfite dissolving pulp. Cellulose (under review)

  • Rahkamo L, Viikari L, Buchert J et al (1998) Enzymatic and alkaline treatments of hardwood dissolving pulp. Cellulose 5:79–88. doi:10.1023/A:1009268713757

    Article  CAS  Google Scholar 

  • Sixta H (2006) Handbook of pulp. Wiley, Weinheim

    Book  Google Scholar 

  • Spiro R (1966) Analysis of sugars found in glycoproteins. Methods Enzymol. 566:7–9

  • Zverlov VV (2003) Two new cellulosome components encoded downstream of celI in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possibly structural protein CseP. Microbiology 149:515–524. doi:10.1099/mic.0.25959-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the "Ministerio de Economía y Competitividad" of Spain for their support in this work under the projects BIOSURFACEL CTQ2012-34109 (funding also from the "Fondo Europeo de Desarrollo Regional FEDER") and BIOPAPμFLUID CTQ2013-48995-C2-1-R. The authors are grateful to the consolidated group with the Universitat de Barcelona (UB) AGAUR 2014 SGR 534. The authors would like to thank DÖMSJO (Sweden) for providing the starting pulp, Fungal Bioproducts (Spain) for kindly supplying the F cellulase and the Department of Microbiology (University of Barcelona, Spain) for warmly providing the B cellulase.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisabet Quintana or M. Blanca Roncero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintana, E., Valls, C., Vidal, T. et al. Comparative evaluation of the action of two different endoglucanases. Part II: On a biobleached acid sulphite pulp. Cellulose 22, 2081–2093 (2015). https://doi.org/10.1007/s10570-015-0631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0631-1

Keywords

Navigation