Skip to main content
Log in

Click chemistry route to covalently link cellulose and clay

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

An efficient method for covalently linking of cellulose and clay using a click chemistry based strategy is reported. Azide and alkynyl derivatives of silane were synthesized and used for silanization of cellulose and clay respectively. Functionalized cellulose and clay were then coupled using Cu(I) catalyzed azide–alkyne cycloaddition reaction, resulting in a covalent linkage between them. Successful synthesis of the silane derivates was established using Fourier transform infrared (FTIR) and nuclear magnetic resonance. Silanization of cellulose and clay with azide and alkynyl derivatives and the formation of a triazole linkage were confirmed using FTIR.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APTES:

(3-aminopropyl)triethoxysilane

DCC:

N,N’-dicyclohexylcarbodiimide

DMAP:

4-dimethylaminopyridine

DCM:

Dichloromethane

DMSO:

Dimethylsulphoxide

DMA:

Dimethylacetamide

EtOAc:

Ethyl acetate

EDC.HCl:

1-Ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride

PyBOP:

Benzotriazol-1-yl-oxytripyrrolidinophosphonium-hexafluorophosphat PyBOP

HBTU:

O-Benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-phosphate

References

  • Abdelmouleh M, Boufi S, ben Salah A, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18(8):3203–3208

    Article  CAS  Google Scholar 

  • Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A, Gandini A (2005) Modification of cellulose fibers with functionalized silanes: effect of the fiber treatment on the mechanical performances of cellulose–thermoset composites. J Appl Polym Sci 98:974–984

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

  • Binder WH, Sachsenhofer R (2007) ‘Click’ chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  • Bovey FA, Winslow EH (1981) An introduction to polymer science. Academic press, New York

    Google Scholar 

  • Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273

    Article  CAS  Google Scholar 

  • Coffey DG, Bell DA, Henderson A (2006) Food polysaccharides and their applications. Taylor and Francis, Boca Raton

    Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2006) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    Article  Google Scholar 

  • Dai JC, Huang JT (1999) Surface modification of clays and clay–rubber composite. Appl Clay Sci 15(1–2):51–65

    Article  CAS  Google Scholar 

  • Dam HH, Caruso F (2012) Modular click assembly of degradable capsules using polyrotaxanes. ACS Nano 6(6):4686–4693

    Article  CAS  Google Scholar 

  • Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Fournier D, Hoogenboom R, Schubert US (2007) Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem Soc Rev 36(8):1369–1380

    Article  CAS  Google Scholar 

  • Freeman GM, Marshall CJJ, Lackey WO, Onizawa M (2000) Silane treated clay production method, silane treated clay and composition containing same. Sanyo Trading Co., J M Huber Corporation, Tokyo, Edison

    Google Scholar 

  • Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3):261–270

    Article  CAS  Google Scholar 

  • Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 127(1):210–216

    Article  CAS  Google Scholar 

  • Hoenich NA (2007) Cellulose for medical applications: past, present, and future. BioResources 1(2):270–280

    Google Scholar 

  • Karaaslan MA, Gao G, Kadla JF (2013) Nanocrystalline cellulose/Î2-casein conjugated nanoparticles prepared by click chemistry. Cellulose 20(6):2655–2665

    Article  CAS  Google Scholar 

  • Krassig H, Steadman RG, Schliefer K, Albrecht W (1986) Ullmann’s Encyclopedia of organic compounds. VCH, New York

    Google Scholar 

  • Liebert T, Hansch C, Heinze T (2006) Click chemistry with polysaccharides. Macromol Rapid Commun 27(3):208–213

    Article  CAS  Google Scholar 

  • Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2012) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12(3):633–641

    Article  Google Scholar 

  • Ludvik C, Glenn G, Klamczynski A, Wood D (2007) Cellulose fiber/bentonite clay/biodegradable thermoplastic composites. J Polym Environ 15(4):251–257

    Article  CAS  Google Scholar 

  • Ly B, Thielemans W, Dufresne A, Chaussy D, Belgacem MN (2008) Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices. Compos Sci Technol 68(15–16):3193–3201

    Article  CAS  Google Scholar 

  • Manna AK, Tripathy DK, De PP, De SK, Chatterjee MK, Peiffer DG (1999) Bonding between epoxidized natural rubber and clay in presence of silane coupling agent. J Appl Polym Sci 72:1895–1903

    Article  CAS  Google Scholar 

  • Maren R, Shuping D, Anjali H, Yong Woo L (2009) Cellulose nanocrystals for drug delivery. Polysaccharide materials: performance by design, vol 1017. American Chemical Society, Washington, pp 81–91

    Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277(1):1–24

    Article  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1):19–26

    Article  CAS  Google Scholar 

  • Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36(8):1249–1262

    Article  CAS  Google Scholar 

  • Okiyama A, Motoki M, Yamanaka S (1992) Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocolloids 6(5):479–487

    Article  CAS  Google Scholar 

  • Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol J-F (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13(4):301–306

    Article  CAS  Google Scholar 

  • Papalos JG (1966) Silane treated clay reinforced resin compositions. U. S. P. Office, J M. Huber Corporation, USA, Locust

    Google Scholar 

  • Qin A, Lam JWY, Tang BZ (2010) Click polymerization: progresses, challenges, and opportunities. Macromolecules 43(21):8693–8702

  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599

    Article  CAS  Google Scholar 

  • Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click Chemistry for drug development and diverse chemical-biology applications. Chem Rev 113(7):4905–4979

    Article  CAS  Google Scholar 

  • Thunwall M, Boldizar A, Rigdahl M, Banke K, Lindström T, Tufvesson H, Högman S (2008) Processing and properties of mineral-interfaced cellulose fibre composites. J Appl Polym Sci 107:918–929

    Article  CAS  Google Scholar 

  • Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27(4):855–864

    Article  CAS  Google Scholar 

  • Wheeler PA, Wang J, Mathias LJ (2006) Poly(methyl methacrylate)/laponite nanocomposites: exploring covalent and ionic clay modifications. Chem Mater 18(17):3937–3945

    Article  CAS  Google Scholar 

  • White LA (2004) Preparation and thermal analysis of cotton–clay nanocomposites. J Appl Polym Sci 92(4):2125–2131

    Article  CAS  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819

    Article  Google Scholar 

  • Yang MY, Li J, Chen PR (2014) Transition metal-mediated bioorthogonal protein chemistry in living cells. Chem Soc Rev 43(18):6511–6526

    Article  CAS  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by Department of Science and Technology – Science and Engineering Research Board (DST-SERB), Grant number SERB/CESE/20120156. FTIR and NMR spectroscopy was done in the Chemistry department at IIT Kanpur. The authors are grateful to Prof. Amit Prashant of IIT Gandhinagar for generously donating kaolinite clay.

Conflict of interest

The authors declare no competing financial interest.

Funding Sources

This work is supported by DST-SERB (SR/S3/CE/038/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Verma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Chacko, S., Kumar, G. et al. Click chemistry route to covalently link cellulose and clay. Cellulose 22, 1615–1624 (2015). https://doi.org/10.1007/s10570-015-0594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0594-2

Keywords

Navigation