Skip to main content
Log in

Nanocrystalline cellulose/β-casein conjugated nanoparticles prepared by click chemistry

  • Communication
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Functionalized nanoparticles are promising building blocks for well-defined nanomaterials with unique properties. Site-specific or regio-selective functionalization of those nanoparticles and organization into high-order assemblies is a major challenge in materials research. Here, we demonstrate site-specific immobilization of a model protein at one tip of nanocrystalline cellulose (NCC), single-crystalline rod-like shaped nanoparticles that are isolated by acid hydrolysis of bulk cellulose. Click reaction between reducing end functionalized NCC bearing azide groups and β-casein micelles bearing acetylene groups results in mushroom-like conjugated nanoparticles in different arrangements. The strategy developed here to design hybrid polysaccharide–protein nanoparticles could be useful for building novel functional self-assembled nanobiomaterials and have potential in nanomedicine, immunoassay and drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alivisatos AP, Johnsson KP, Peng X et al (1996) Organization of “nanocrystal molecules” using DNA. Nature 382:609–611. doi:10.1038/382609a0

    Article  CAS  Google Scholar 

  • Arola S, Tammelin T, Setälä H et al (2012) Immobilization-stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation. Biomacromolecules 13:594–603. doi:10.1021/bm201676q

    Article  CAS  Google Scholar 

  • Binder WH, Sachsenhofer R (2007) “Click” chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54. doi:10.1002/marc.200600625

    Article  CAS  Google Scholar 

  • Capadona JR, Van Den Berg O, Capadona L a et al (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769. doi:10.1038/nnano.2007.379

    Article  CAS  Google Scholar 

  • Capadona JR, Shanmuganathan K, Tyler DJ et al (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science (New York, NY) 319:1370–1374. doi:10.1126/science.1153307

    Article  CAS  Google Scholar 

  • Caswell KK, Wilson JN, Bunz UHF, Murphy CJ (2003) Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J Am Chem Soc 125:13914–13915. doi:10.1021/ja037969i

    Article  CAS  Google Scholar 

  • Chang J-Y, Wu H, Chen H, et al. (2005) Oriented assembly of Au nanorods using biorecognition system. Chem Commun (Cambridge, England) 8:1092–1094. doi: 10.1039/b414059a

    Google Scholar 

  • Chao J, Huang W-Y, Wang J et al (2009) Click-chemistry-conjugated oligo-angiomax in the two-dimensional DNA lattice and its interaction with thrombin. Biomacromolecules 10:877–883. doi:10.1021/bm8014076

    Article  CAS  Google Scholar 

  • da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425. doi:10.1021/bm034144s

    Article  Google Scholar 

  • Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11:1060–1066. doi:10.1021/bm1000247

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia L a, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Hieta K, Kuga S, Usuda M (1984) Electron staining of reducing ends evidences a parallel-chain structure in valonia cellulose. Biopolymers 23:1807–1810

    Article  CAS  Google Scholar 

  • Hoagland PD (1968) Acylated beta-caseins. Effect of alkyl group size on calcium ion sensitivity and on aggregation. Biochemistry 7:2542–2546

    Article  CAS  Google Scholar 

  • Jackson JK, Letchford K, Wasserman BZ et al (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6:321–330. doi:10.2147/IJN.S16749

    CAS  Google Scholar 

  • Kamiya N, Shiotari Y, Tokunaga M, et al. (2009) Stimuli-responsive nanoparticles composed of naturally occurring amphiphilic proteins. Chem Commun (Cambridge, England) 35:5287–5289. doi: 10.1039/b909897f

    Google Scholar 

  • Kim N-H, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromolecules 7:274–280. doi:10.1021/bm0506391

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T et al (1998) Comprehensive cellulose. Chemistry. doi:10.1002/3527601929

    Google Scholar 

  • Kuga S, Brown RMJ (1988) Silver labelling of the reducing ends of bacterial cellulose. Carbohydr Res 180:345–350

    Article  CAS  Google Scholar 

  • Lokanathan AR, Nykänen A, Seitsonen J et al (2013) Cilia-Mimetic hairy surfaces based on end-immobilized nanocellulose colloidal rods. Biomacromolecules. doi:10.1021/bm400633r

    Google Scholar 

  • Lu Y, Yang X, Ma Y et al (2006) Self-assembled branched nanostructures of single-walled carbon nanotubes with DNA as linkers. Chem Phys Lett 419:390–393. doi:10.1016/j.cplett.2005.11.116

    Article  CAS  Google Scholar 

  • Mangalam AP, Simonsen J, Benight AS (2009) Cellulose/DNA hybrid nanomaterials. Biomacromolecules 10:497–504. doi:10.1021/bm800925x

    Article  CAS  Google Scholar 

  • Mann S (2009) Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 8:781–792. doi:10.1038/nmat2496

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609. doi:10.1038/382607a0

    Article  CAS  Google Scholar 

  • Nie Z, Fava D, Kumacheva E et al (2007) Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat Mater 6:609–614. doi:10.1038/nmat1954

    Article  CAS  Google Scholar 

  • Orelma H, Johansson L-S, Filpponen I et al (2012) Generic method for attaching biomolecules via avidin-biotin complexes immobilized on films of regenerated and nanofibrillar cellulose. Biomacromolecules 13:2802–2810. doi:10.1021/bm300781k

    Article  CAS  Google Scholar 

  • Park S, Pai J, Han E-H et al (2010) One-step, aid-mediated method for modification of glass surfaces with N-hydroxysuccinimide esters and its application to the construction of microarrays for studies of biomolecular interactions. Bioconjug Chem 21:1246–1253. doi:10.1021/bc100042j

    Article  CAS  Google Scholar 

  • Pramod P, Joseph STS, Thomas KG (2007) Preferential end functionalization of Au nanorods through electrostatic interactions. J Am Chem Soc 129:6712–6713. doi:10.1021/ja071536o

    Article  CAS  Google Scholar 

  • Sadeghifar H, Filpponen I, Clarke SP et al (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355. doi:10.1007/s10853-011-5696-0

    Article  CAS  Google Scholar 

  • Salant A, Amitay-Sadovsky E, Banin U (2006) Directed self-assembly of gold-tipped CdSe nanorods. J Am Chem Soc 128:10006–10007. doi:10.1021/ja063192s

    Article  CAS  Google Scholar 

  • Shapira A, Assaraf YG, Livney YD (2010) Beta-casein nanovehicles for oral delivery of chemotherapeutic drugs. Nanomed Nanotechnol Biol Med 6:119–126. doi:10.1016/j.nano.2009.06.006

    Article  CAS  Google Scholar 

  • Shopsowitz KE, Qi H, Hamad WY, Maclachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–425. doi:10.1038/nature09540

    Article  CAS  Google Scholar 

  • Shopsowitz KE, Hamad WY, MacLachlan MJ (2012) Flexible and iridescent chiral nematic mesoporous organosilica films. J Am Chem Soc 134:867–870. doi:10.1021/ja210355v

    Article  CAS  Google Scholar 

  • Sipahi-Saglam E, Gelbrich M, Gruber E (2003) Topochemically modified cellulose. 237–250

  • Vigderman L, Khanal BP, Zubarev ER (2012) Functional Gold Nanorods: Synthesis, Self-Assembly, and Sensing Applications. Adv Mat 24(36):4811–4841. doi: 10.1002/adma.201201690

  • Weizmann Y, Chenoweth DM, Swager TM (2010) Addressable terminally linked DNA-CNT nanowires. J Am Chem Soc 132:14009–14011. doi:10.1021/ja106352y

    Article  CAS  Google Scholar 

  • Xia Y, Yang P, Sun Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389. doi:10.1002/adma.200390087

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Project Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Kadla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 325 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaaslan, M.A., Gao, G. & Kadla, J.F. Nanocrystalline cellulose/β-casein conjugated nanoparticles prepared by click chemistry. Cellulose 20, 2655–2665 (2013). https://doi.org/10.1007/s10570-013-0065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0065-6

Keywords

Navigation