Skip to main content
Log in

Facile strategy for preparation of alkyne-functionalized cellulose fibers with click reactivity

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A facile strategy for preparation of alkyne-functionalized cellulose fibers with click reactivity is reported herein. Poly(3-ethynylaniline) [poly(3-EA)] with pendant alkynyl groups was obtained by chemical oxidation polymerization of 3-ethynylaniline with ammonium persulfate in low-concentration hydrochloric acid solution at ice-bath temperature and used to generate alkyne-functionalized cellulose fibers in situ from pulp fibres. Successful preparation of alkyne-functionalized cellulose fibers was confirmed by attenuated total reflectance Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The effects of process variables on poly(3-EA) deposition and fiber loss were investigated, and suitable preparation conditions identified. Deposition of poly(3-EA) did not change the crystallinity or hydrophilicity of the cellulose fibers. Poly(3-EA) and alkyne-functionalized cellulose fibers reacted with azides by Cu(I)-catalyzed alkyne–azide 1,3-dipolar cycloaddition. Thus, this in situ chemical polymerization technology provides a new platform for click functionalization of cellulose fibers. Applications of cellulose fibers produced in this way are limited to those without demanding requirements in terms of product strength or color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agag T, Vietmeier K, Chernykh A, Ishida H (2012) Side-chain type benzoxazine-functional cellulose via click chemistry. J Appl Polym Sci 125:1346–1351

    Article  CAS  Google Scholar 

  • Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047

    Article  CAS  Google Scholar 

  • Alila S, Ferraria AM, do Rego AMB, Boufi S (2009) Controlled surface modification of cellulose fibers by amino derivatives using N,N′-carbonyldiimidazole as activator. Carbohydr Polym 77:553–562

    Article  CAS  Google Scholar 

  • Belgacem MN, Gandini A (eds) (2008) Surface modification of cellulose fibres. In: Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 385–400

  • Bock VD, Hiemstra H, Van Maarseveen JH (2006) Cu(I)-catalyzed alkyne–azide “click” cycloadditions from a mechanistic and synthetic perspective. Eur J Org Chem 3:51–68

    Article  Google Scholar 

  • Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8:3697–3704

    Article  CAS  Google Scholar 

  • Chen GJ, Tao L, Mantovani G, Ladmiral V, Burt DP, Macpherson JV, Haddleton DM (2007) Synthesis of azide/alkyne-terminal polymers and application for surface functionalisation through a [2 + 3] Huisgen cycloaddition process, “click chemistry”. Soft Matter 3:732–739

    Article  CAS  Google Scholar 

  • Chen ZX, Zhu JT, Xie HB, Li S, Wu YM, Gong YF (2010) Copper(I)-catalyzed synthesis of novel 4-(trifluoromethyl)-[1,2,3]triazolo[1,5-a]quinoxalines via cascade reactions of N-(o-haloaryl)alkynylimine with sodium azide. Adv Synth Catal 352:1296–1300

    Article  CAS  Google Scholar 

  • Chen Y, Qian XR, An XH (2011) Preparation and characterization of conductive paper via in situ polymerization of 3,4-ethylenedioxythiophene. BioResources 6:3410–3423

    CAS  Google Scholar 

  • Derikvand F, Yin DT, Barrett R, Brumer H (2016) Cellulose-based biosensors for esterase detection. Anal Chem 88:2989–2993

    Article  CAS  Google Scholar 

  • Ding CY, Qian XR, Shen J, An XH (2010) Preparation and characterization of conductive paper via in situ polymerization of pyrrole. BioResources 5:303–315

    CAS  Google Scholar 

  • Elchinger PH, Faugeras PA, Boëns B, Brouillette F, Montplaisir D, Zerrouki R, Lucas R (2011) Polysaccharides: the “click” chemistry impact. Polymers 3:1607–1651

    Article  CAS  Google Scholar 

  • Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “click” reaction and adsorption. Biomacromolecules 13:736–742

    Article  CAS  Google Scholar 

  • Finn MG, Kolb HC, Fokin VV, Sharpless KB (2008) Click chemistry: definition and aims. Prog Chem 20:1–4

    Google Scholar 

  • Gandini A, Pasquini D (2012) The impact of cellulose fibre surface modification on some physico-chemical properties of the ensuing papers. Ind Crop Prod 35:15–21

    Article  CAS  Google Scholar 

  • Grigoray O, Wondraczek H, Heikkila E, Fardim P, Heinze T (2014) Photoresponsive cellulose fibers by surface modification with multifunctional cellulose derivatives. Carbohydr Polym 111:280–287

    Article  CAS  Google Scholar 

  • Hafren J, Zou WB, Cordova A (2006) Heterogeneous ‘organoclick’ derivatization of polysaccharides. Macromol Rapid Commun 27:1362–1366

    Article  CAS  Google Scholar 

  • Huang W, Huang JJ, Xu CH, Gu SJ, Xu WL (2014) Surface functionalization of cellulose membrane via heterogeneous “click” grafting of zwitterionic sulfobetaine. Polym Bull 71:2559–2569

    Article  CAS  Google Scholar 

  • Junka K, Filpponen I, Johansson L-S, Kontturi E, Rojas OJ, Laine J (2014) A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydr Polym 100:107–115

    Article  CAS  Google Scholar 

  • Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem 40:2004–2021

    Article  CAS  Google Scholar 

  • Krouit M, Bras J, Belgacem MN (2008) Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. Eur Polym J 44:4074–4081

    Article  CAS  Google Scholar 

  • Lee DG, Chang VS (1979) Oxidation of hydrocarbons. 9. The oxidation of alkynes by potassium permanganate. J Org Chem 44:2726–2730

    Article  CAS  Google Scholar 

  • Lei Y, Qian XR, Shen J, An XH (2012) Integrated reductive/adsorptive detoxification of Cr(VI)-contaminated water by polypyrrole/cellulose fiber composite. Ind Eng Chem Res 51:10408–10415

    Article  CAS  Google Scholar 

  • Li J, Qian XR, Wang LJ, An XH (2010) XPS characterization and percolation behavior of polyaniline-coated conductive paper. BioResources 5:712–726

    CAS  Google Scholar 

  • Liebert T, Hansch C, Heinze T (2006) Click chemistry with polysaccharides. Macromol Rapid Commun 27:208–213

    Article  CAS  Google Scholar 

  • Liu XY, Qian XR, Shen J, Zhou WP, An XH (2012) An integrated approach for Cr(VI)-detoxification with polyaniline/cellulose fiber composite prepared using hydrogen peroxide as oxidant. Bioresour Technol 124:516–519

    Article  CAS  Google Scholar 

  • Ly EB, Bras J, Sadocco P, Belgacem MN, Dufresne A, Thielemans W (2010) Surface functionalization of cellulose by grafting oligoether chains. Mater Chem Phys 120:438–445

    Article  CAS  Google Scholar 

  • Mangiante G, Alcouffe P, Burdin B, Gaborieau M, Zeno E, Petit-Conil M, Bernard J, Charlot A, Fleury E (2013) Green nondegrading approach to alkyne-functionalized cellulose fibers and biohybrids thereof: synthesis and mapping of the derivatization. Biomacromolecules 14:254–263

    Article  CAS  Google Scholar 

  • Mao H, Wu XN, Qian XR, An XH (2014) Conductivity and flame retardancy of polyaniline-deposited functional cellulosic paper doped with organic sulfonic acids. Cellulose 21:697–704

    Article  CAS  Google Scholar 

  • Meng X, Edgar KJ (2016) “Click” reactions in polysaccharide modification. Prog Polym Sci 53:52–85

    Article  CAS  Google Scholar 

  • Ogata Y, Sawaki Y, Ohno T (1982) Mechanism for oxidation of phenylacetylenes with peroxymonophosphoric acid. Oxirene as an intermediate inconvertible to ketocarbene. J Am Chem Soc 104:216–219

    Article  CAS  Google Scholar 

  • Paquet O, Krouit M, Bras J, Thielemans W, Belgacem MN (2010) Surface modification of cellulose by PCL grafts. Acta Mater 58:792–801

    Article  CAS  Google Scholar 

  • Pohl M, Morris GA, Harding SE, Heinze T (2009) Studies on the molecular flexibility of novel dendronized carboxymethyl cellulose derivatives. Eur Polym J 45:1098–1110

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  • Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer. Pure Appl Chem 74:857–867

    Article  CAS  Google Scholar 

  • Tang JS, Wang LX, Jing XB, Wang FS (1989) The effect of acid concentration on the aniline polymerization and the characterization of polymers obtained. Acta Polym Sin 2:188–191

    Google Scholar 

  • van Berkel SS, Dirks ATJ, Debets MF, van Delft FL, Cornelissen JJLM, Nolte RJM, Rutjes FPJT (2007) Metal-free triazole formation as a tool for bioconjugation. ChemBioChem 8:1504–1508

    Article  Google Scholar 

  • Xiong FQ, Han YM, Li GY, Qin TF, Wang SQ, Chu FX (2016) Research status of click chemistry used for chemical modification of lignocellulose. Sci Silvae Sin 52:90–96

    Google Scholar 

  • Xu C, Spadiut O, Silva ACA, Brumer H (2012) Chemo-enzymatic assembly of clickable cellulose surfaces via multivalent polysaccharides. ChemSusChem 5:661–665

    Article  CAS  Google Scholar 

  • Yilmaz F, Kucukyavuz Z (2013) The influence of polymerization temperature on structure and properties of polyaniline. E-Polymers 9:48–57

    Google Scholar 

  • Zampano G, Bertoldo M, Bronco S (2009) Poly(ethyl acrylate) surface-initiated ATRP grafting from wood pulp cellulose fibers. Carbohydr Polym 75:22–31

    Article  CAS  Google Scholar 

  • Zhao GL, Hafren J, Deiana L, Cordova A (2010) Heterogeneous “organoclick” derivatization of polysaccharides: photochemical thiol-ene click modification of solid cellulose. Macromol Rapid Commun 31:740–744

    Article  CAS  Google Scholar 

  • Zhou Q, Baumann MJ, Brumer H, Teeri TT (2006) The influence of surface chemical composition on the adsorption of xyloglucan to chemical and mechanical pulps. Carbohydr Polym 63:449–458

    Article  CAS  Google Scholar 

  • Zhou Q, Rutland MW, Teeri TT, Brumer H (2007) Xyloglucan in cellulose modification. Cellulose 14:625–641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (grant no. 31370579) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueren Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, G., Ding, C., Song, F. et al. Facile strategy for preparation of alkyne-functionalized cellulose fibers with click reactivity. Cellulose 24, 591–607 (2017). https://doi.org/10.1007/s10570-016-1153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1153-1

Keywords

Navigation