Skip to main content
Log in

Mesoporous structures in never-dried softwood cellulose fibers investigated by nitrogen adsorption

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nitrogen adsorption was used to characterize mesoporous structures in never-dried softwood cellulose fibers. Distinct inflections in desorption isotherms were observed over the relative vapor pressure (P/P0) range of 0.5–0.42 for never-dried cellulose fibers and partially delignified softwood powders. The reduction in N2 adsorption volume was attributed to cavitation of condensed N2 present in mesopores formed via lignin removal from wood cell walls during delignification. The specific surface areas of significantly delignified softwood powders were ~150 m2 g−1, indicating that in wood cell walls 16 individual cellulose microfibrils, each 3–4 nm in width, form one cellulose fibril bundle surrounded with a thin layer of lignin and hemicelluloses. Analysis of N2 adsorption isotherms indicates that mesopores in the softwood cellulose fibers and partially delignified softwood powders had peaks ranging from 4 to 20 nm in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibrils with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Alince B, van de Ven TGM (1997) Porosity of swollen pulp fibers evaluated by polymer adsorption. In: Baker CF (ed) 11th Fundamental research symposium transactions on the fundamentals of papermaking materials, Cambridge. Pira International, Leatherhead, Surrey, UK, pp 771–788

  • Awano T, Takabe M, Fujita M, Daniel G (2000) Deposition of glucurono xylans on the secondary cell wall of Japanese beech as observed by immuno-scanning electron microscopy. Protoplasma 212:72–79

    Article  CAS  Google Scholar 

  • Barakat A, Winter H, Rondeau-Mouro C, Saake B, Chabbet B, Cathala B (2007) Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation. Planta 226:267–281

    Article  CAS  Google Scholar 

  • Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  • Brunauer S, Deming LSD, Deming WS, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732

    Article  CAS  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154

    Article  CAS  Google Scholar 

  • Chen Y, Wang Y, Wan J, Ma Y (2010) Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose 17:329–338

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G (2011) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6:417–423

    Article  Google Scholar 

  • de Boer JH (1958) The shape of capillaries. In: Everett DH, Stone FS (eds) The structure and properties of porous materials”. Butterworth, London, pp 68–94

    Google Scholar 

  • de Boer JH, Lippens BC, Linsen BG, Broekhoff JCP, van den Heuvel A, Osinga ThJ (1966) The t-curve of multimolecular N2-adsorption. J Colloid Interface Sci 21:405–414

    Article  Google Scholar 

  • Duchesne I, Daniel G (2000) Changes in surface ultrastructure of Norway spruce fibres during kraft pulping—visualisation by field emission-SEM. Nordic Pulp Pap Res J 15:54–61

    Article  CAS  Google Scholar 

  • Eriksson M, Torgnysdotter A, Wågberg L (2006) Surface modification of wood fibers using the polyelectrolyte multilayer technique: effects on fiber joint and paper strength properties. Ind Eng Res Chem 45:5279–5286

    Article  CAS  Google Scholar 

  • Fahlen J, Salmen L (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J Mater Sci 38:119–126

    Article  CAS  Google Scholar 

  • Fahlen J, Salmen L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438

    Article  CAS  Google Scholar 

  • Fan LT, Lee YH, Beardmore DH (1980) Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 22:177–199

    Article  CAS  Google Scholar 

  • Fengel D (1970) Ultrastructural behaviour of cell wall polysaccharides. Tappi 53:497–503

    CAS  Google Scholar 

  • Hanna RE (1971) The interpretation of high resolution electron micrographs of the cellulose elementary fibril. J Polym Sci Part C 36:409–413

    Article  Google Scholar 

  • Harada H (1965) Cellular ultrastructure of woody plants. Syracuse University Press, USA

    Google Scholar 

  • Haselton WR (1954) Gas adsorption by wood, pulp, and paper, the low-temperature adsorption of nitrogen, butane, and carbon dioxide by spruce and its components. TAPPI 37(9):404–412

    CAS  Google Scholar 

  • Hubbe MA, Venditti RA, Rojas OJ (2007) What happens to cellulosic fibers during papermaking and recycling? A review. Bioresources 2:739–788

    CAS  Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—An inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Hult EL, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110

    Article  CAS  Google Scholar 

  • Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Jacob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    Article  Google Scholar 

  • Jaroniec M, Kruk M (1999) Standard nitrogen adsorption data for characterization of nanoporous silicas. Langmuir 15:5410–5413

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature–based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Landín M, Matínez-Pacheco R, Gómez-Amoza JL, Souto C, Concheiro A, Rowe RC (1993) Effect of country of origin on the properties of microcrystalline cellulose. Int J Pharm 26:133–141

    Article  Google Scholar 

  • Li TQ, Henriksson U, Ödberg L (1993) Determination of pore sizes in wood cellulose fibers by 2H and 1H NMR. Nordic Pulp Pap Res J 8(3):326–330

    Article  CAS  Google Scholar 

  • Maloney TC, Paurapuro H (1999) The formation of pores in the cell wall. J Pulp Pap Sci 25(12):430–436

    CAS  Google Scholar 

  • Maloney TC, Paulapuro H, Stenius P (1998) Hydration and swelling of pulp fibers measured with differential scanning calorimetry. Nordic Pulp Pap Res J 13(1):31–36

    Article  CAS  Google Scholar 

  • Merchant MV (1957) A study of water-swollen cellulose fibers which have been liquid-exchanged and dried from hydrocarbons. TAPPI 40(9):771–781

    CAS  Google Scholar 

  • Nakai K, Yoshida M, Sonoda J, Nakada Y, Hakuman M, Naono H (2010) High resolution N2 adsorption isotherms by graphitized carbon black and nongraphitized carbon black –αs–curves, adsorption enthalpies and entropies. J Colloid Interface Sci 351:507–514

    Article  CAS  Google Scholar 

  • Naono H, Hakuman M (1993) Analysis of porous texture by means of water vapor adsorption isotherm with particular attention to lower limit of hysteresis loop. J Colloid Interface Sci 158:19–26

    Article  CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700

    Article  CAS  Google Scholar 

  • Rouquerol F, Rouquerol J, Sing KSW (1999) Adsorption by powders & porous solids, principles, methodology and applications. Academic Press, San Diego, pp 204–206

    Google Scholar 

  • Salmen L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure-property relationships. J Pulp Paper Sci 24:99–103

    CAS  Google Scholar 

  • Scallan AM (1978) The accommodation of water within pulp Fibres. In: Fibre-water interactions in paper making, Fundamental Res. Committee, ed., Tech. Div. BPBIF, UK, pp 9–27

  • Sing KSW (1970) Utilization of adsorption data in the BET region. In: Everett DH, Ottewill RH (eds) Surface area determination. Butterworths, London, pp 25–42

    Chapter  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Stone JE, Scallan AM (1968) The effect of component removal upon the porous structure of the cell wall of wood. Part III. A comparison between the sulphite and kraft process. Pulp Pap Mag Can 69:289–293

    Google Scholar 

  • Stone JE, Scallan AM, Abrahamson B (1968) Influence of beating on cell wall swelling and internal fibrillation. Svensk papperstidn 71(19):687–694

    CAS  Google Scholar 

  • Suchy M, Virtanen J, Kontturi E, Vuorinen T (2010a) Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy. Biomacromolecules 11:515–520

    Article  CAS  Google Scholar 

  • Suchy M, Kontturi E, Vuorinen T (2010b) Impact of drying on wood ultrastructure: similarities in cell wall alteration between native wood and isolated wood-based fibers. Biomacromolecules 11:2161–2168

    Article  CAS  Google Scholar 

  • Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168

    Article  CAS  Google Scholar 

  • Thode EF, Swanson JW, Becher JJ (1958) Nitrogen adsorption on solvent exchanged wood cellulose fibers: indications of “total” surface area and pore size distribution. J Phys Chem 62:1036–1039

    Article  CAS  Google Scholar 

  • Thommes M, Smarsly B, Groenewolt M, Ravikovith PI, Neimark AV (2006) Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 22:756–764

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. M. Nakano and H. Meguro, Nippon BEL Co. Ltd., Japan, for their useful technical suggestions and discussion. This research was supported by Grants-in-Aids for Scientific Research (Grant Numbers 21228007 and 23688020) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, M., Qi, ZD., Fukuzumi, H. et al. Mesoporous structures in never-dried softwood cellulose fibers investigated by nitrogen adsorption. Cellulose 21, 3193–3201 (2014). https://doi.org/10.1007/s10570-014-0342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0342-z

Keywords

Navigation