Skip to main content
Log in

Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC)-based hydrogel with sensitivity to environmental changes, pH and salts was synthesized by using fumaric acid and malic acid at various concentrations. Water uptake capacity of hydrogels was investigated in distilled water, various salt and pH solutions. From pH-dependent studies, it was found that greater water uptake values were observed at greater pH values (7.4), and reversible pH responsiveness of CMC–HEC based hydrogels was obtained. Decreasing the water uptake capacity with increasing of the charge of the metal cation (Al3+ < Ca2+ < Na+) demonstrated metal ion responsiveness of CMC–HEC-based hydrogels. From tensile tests of the hydrogels, a greater crosslinker concentration led to greater tensile strength values. Thermogravimetric analysis and scanning electron microscopy images were used to determine the thermal stability and to observe morphological properties of the samples, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bamgbose JT, Bamigbade AA, Adewuyi S, Dare EO, Lasisi AA, Njah AN (2012) Equilibrium swelling and kinetic studies of highly swollen chitosan film. J Chem Chem Eng 6(3):272–283

    Google Scholar 

  • Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd Polym 84(1):76–82. doi:10.1016/j.carbpol.2010.10.061

    Article  CAS  Google Scholar 

  • Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohyd Polym 57(4):379–387. doi:10.1016/j.carbpol.2004.04.020

    Article  CAS  Google Scholar 

  • Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460. doi:10.1002/App.28660

    Article  CAS  Google Scholar 

  • Dolbow J, Fried E, Ji H (2005) A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels. Comput Methods Appl Mech Eng 194(42–44):4447–4480. doi:10.1016/j.cma.2004.12.004

    Article  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Gao D, Heimann RB (1993) Structure and mechanical properties of superabsorbent poly(acrylamide)-montmorillonite composite hydrogels. Polym Gels Networks 1(4):225–246. doi:10.1016/0966-7822(93)90002-Y

    Article  CAS  Google Scholar 

  • Gosavi UR, Deopurkar RL, Ghole VS (1999) Microbial degradation of superabsorbent HSPAN gel by an indigenously isolated bacterial culture. Macromolecules 32(13):4264–4271. doi:10.1021/ma981569b

    Article  CAS  Google Scholar 

  • Hogari K, Ashiya F (1994) Advances in superabsorbent polymers. American Chemical Society, Washington

  • Hosseinzadeh H, Pourjavadi A, Mahdavinia GR, Zohuriaan-Mehr MJ (2005) Modified carrageenan. 1. H-CarragPAM, a novel biopolymer-based superabsorbent hydrogel. J Bioact Comp Polym 20(5):475–490. doi:10.1177/0883911505055164

    Article  CAS  Google Scholar 

  • Katime I, Valderruten N, Quintana JR (2001) Controlled release of aminophylline from poly(N-isopropylacrylamide-co-itaconic acid) hydrogels. Polym Int 50(8):869–879. doi:10.1002/pi.707

    Article  CAS  Google Scholar 

  • Kobayashi T (1987) Structure and properties of super-absorbent polymers. Kobunshi 36:612–615

    Google Scholar 

  • Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26(9):1921–1971. doi:10.1016/S0079-6700(01)00007-7

    Article  CAS  Google Scholar 

  • Liu Z, Miao Y, Wang Z, Yin G (2009) Synthesis and characterization of a novel super-absorbent based on chemically modified pulverized wheat straw and acrylic acid. Carbohyd Polym 77(1):131–135. doi:10.1016/j.carbpol.2008.12.019

    Article  CAS  Google Scholar 

  • Pourjavadi A, Barzegar S, Mahdavinia GR (2006) MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohyd Polym 66(3):386–395. doi:10.1016/j.carbpol.2006.03.013

    Article  CAS  Google Scholar 

  • Raju KM, Padmanabha Raju M, Murali Mohan Y (2004) Synthesis and swelling behavior of superabsorbent polymeric materials. Int J Polym Mater Polym Biomater 53(5):419–429. doi:10.1080/00914030490429924

    Article  CAS  Google Scholar 

  • Sadeghi M, Koutchakzadeh G (2007) Swelling kinetics study of hydrolyzed carboxymethylcellulose-poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt-sensitivity properties. J Sci IAU 17(64):19–26

    Google Scholar 

  • Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polymer 46(13):4676–4685. doi:10.1016/j.polymer.2005.03.072

    Article  CAS  Google Scholar 

  • Sannino A, Madaghiele M, Lionetto MG, Schettino T, Maffezzoli A (2006) A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 102(2):1524–1530. doi:10.1002/app.24468

    Article  CAS  Google Scholar 

  • Seki Y, Yurdakoc K (2008) Synthesis of pH dependent chitosan-EPI hydrogel films and their application for in vitro release of promethazine hydrochloride. J Appl Polym Sci 109(1):683–690. doi:10.1002/app.28127

    Article  CAS  Google Scholar 

  • Shiga T, Hirose Y, Okada A, Kurauchi T (1993) Bending of ionic polymer gel caused by swelling under sinusoidally varying electric-fields. J Appl Polym Sci 47(1):113–119. doi:10.1002/app.1993.070470114

    Article  CAS  Google Scholar 

  • Wang W, Wang A (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohyd Polym 82(1):83–91. doi:10.1016/j.carbpol.2010.04.026

    Article  CAS  Google Scholar 

  • Zhang J, Li A, Wang A (2006) Synthesis and characterization of multifunctional poly(acrylic acid-co-acrylamide)/sodium humate superabsorbent composite. React Funct Polym 66(7):747–756. doi:10.1016/j.reactfunctpolym.2005.11.002

    Article  CAS  Google Scholar 

  • Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohyd Polym 68(2):367–374. doi:10.1016/j.carbpol.2006.11.018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Savaş Ertaş, Simge Sivrioğlu and İbrahim Şen for their contributions to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoldas Seki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seki, Y., Altinisik, A., Demircioğlu, B. et al. Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization. Cellulose 21, 1689–1698 (2014). https://doi.org/10.1007/s10570-014-0204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0204-8

Keywords

Navigation