Skip to main content

Advertisement

Log in

A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acemioğlu, B. (2004). Adsorption of congo red from aqueous solution onto calcium-rich fly ash. Journal of Colloid and Interface Science, 274, 371–379.

    Article  CAS  Google Scholar 

  • Acemioğlu, B. (2005). Batch kinetic study of sorption of methylene blue by perlite. Chemical Engineering Journal, 106, 73–81.

    Article  CAS  Google Scholar 

  • Ahmad, A. L., Loh, M. M., & Aziz, J. A. (2007). Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption. Dyes and Pigments, 75, 263–272.

    Article  CAS  Google Scholar 

  • Ahmed, M. N., & Ram, R. N. (1992). Removal of basic dye from waste-water using silica as adsorbent. Environmental Pollution, 77, 79–86.

    Article  CAS  Google Scholar 

  • Akar, T., Tosun, I., Kaynak, Z., Ozkara, E., Yeni, O., Sahin, E. N., et al. (2009). An attractive agro-industrial by-product in environmental cleanup: Dye biosorption potential of untreated olive pomace. Journal of Hazardous Materials, 166, 1217–1225.

    Article  CAS  Google Scholar 

  • Akkaya, G., Uzun, İ., & Güzel, F. (2007). Kinetics of the adsorption of reactive dye by chitin. Dyes and Pigments, 73, 168–177.

    Article  CAS  Google Scholar 

  • Aksu, Z. (2001). Biosorption of reactive dyes by dried activated sludge: Equilibrium and kinetic modeling. Biochemical Engineering Journal, 7, 79–84.

    Article  CAS  Google Scholar 

  • Aksu, Z. (2003). Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochemistry, 38, 1437–1444.

    Article  CAS  Google Scholar 

  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997–1026.

    Article  CAS  Google Scholar 

  • Aksu, Z., & Dönmez, G. (2003). A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere, 50, 1075–1083.

    Article  CAS  Google Scholar 

  • Aksu, Z., & Tezer, S. (2000). Equilibrium and kinetic modeling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: Effect of temperature. Process Biochemistry, 36, 431–439.

    Article  CAS  Google Scholar 

  • Aksu, Z., & Tezer, S. (2005). Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochemistry, 40, 1347–1361.

    Article  CAS  Google Scholar 

  • Albanis, T. A., Hela, D. G., Sakellarides, T. M., & Danis, T. G. (2000). Removal of dyes from aqueous solutions by adsorption on mixtures of fly ash and soil in batch and column techniques. Global Nest: The International Journal, 2, 237–244.

    Google Scholar 

  • Al-Bastaki, N., & Banat, F. (2004). Combining ultrafiltration and adsorption on bentonite in a one-step process for the treatment of colored waters. Resources, Conservation and Recycling, 41, 103–113.

    Article  Google Scholar 

  • Adler, E., & Lundquist, K. (1963). Spectrochemical estimation of phenylcoumaran elements in ligini. Acta Chemica Scandinavica, 17, 13–26.

    Article  CAS  Google Scholar 

  • Al-Degs, Y., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2000). Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Research, 34, 927–935.

    Article  CAS  Google Scholar 

  • Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh, A. H., & Walker, G. M. (2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 77, 16–23.

    Article  CAS  Google Scholar 

  • Al-Ghouti, M. A., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2003). The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of Environmental Management, 69, 229–238.

    Article  CAS  Google Scholar 

  • Alhassani, H. A., Rauf, M. A., & Ashraf, S. S. (2007). Efficient microbial degradation of toluidine blue by Brevibacillus sp. Dyes and Pigments, 75, 395–400.

    Article  CAS  Google Scholar 

  • Alkan, M., Çelikçapa, S., Demirbaş, Ö., & Doğan, M. (2005). Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes and Pigments, 65, 251–259.

    Article  CAS  Google Scholar 

  • Alkan, M., Demirbaş, Ö., Çelikçapa, S., & Doğan, M. (2004). Sorption of acid red 57 from aqueous solution onto sepiolite. Journal of Hazardous Materials, B116, 135–145.

    Article  CAS  Google Scholar 

  • Alkan, M., Demirbas, Ö., & Doğan, M. (2007). Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous and Mesoporous Materials, 101, 388–396.

    Article  CAS  Google Scholar 

  • Allen, S. J. (1987). Equilibrium adsorption isotherms for peat. Fuel, 66, 1171–1175.

    Article  CAS  Google Scholar 

  • Allen, S. J., Gan, Q., Matthews, R., & Johnson, P. A. (2003). Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresource Technology, 88, 143–152.

    Article  CAS  Google Scholar 

  • Allen, S. J., McKay, G., & Khader, K. Y. H. (1988a). Multi-component sorption isotherms of basic dyes onto peat. Environmental Pollution, 52, 39–53.

    Article  CAS  Google Scholar 

  • Allen, S. J., McKay, G., & Khader, K. Y. H. (1988b). The adsorption of acid dye onto peat from aqueous solution-solid diffusion model. Journal of Colloid and Interface Science, 126, 517–524.

    Article  CAS  Google Scholar 

  • Allen, S. J., McKay, G., & Porter, J. F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280, 322–333.

    Article  CAS  Google Scholar 

  • Allen, S. J., Murray, M., Brown, P., & Flynn, O. (1994). Peat as an adsorbent for dyestuffs and metals in wastewater. Resources, Conservation and Recycling, 11, 25–39.

    Article  Google Scholar 

  • Annadurai, G., Chellapandian, M., & Krishnan, M. R. V. (1999). Adsorption of reactive dye on chitin. Environmental Monitoring and Assessment, 59, 111–119.

    Article  CAS  Google Scholar 

  • Annadurai, G., Juang, R., & Lee, D. (2002). Use of cellulose based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, B92, 263–274.

    Article  Google Scholar 

  • Arami, M., Limaee, N. Y., Mahmoodi, N. M., & Tabrizi, N. S. (2005). Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies. Journal of Colloid and Interface Science, 288, 371–376.

    Article  CAS  Google Scholar 

  • Arami, M., Limaee, N. Y., & Mahmoodi, N. M. (2006). Investigation on the adsorption capability of egg shell membrane towards model textile dyes. Chemosphere, 65, 1999–2008.

    Article  CAS  Google Scholar 

  • Arbeloa, F. L., Martinez, J. M. H., Arbeloa, T. L., & Arbeloa, I. L. (1998). The hydrophobic effect on the adsorption of Rhodamines in aqueous suspensions of smectite. The rhodamine 3B/laponite B system. Langmuir, 14, 4566–4573.

    Google Scholar 

  • Arbeloa, F. L., Martinez, V. M., Prieto, J. B., & Arbeloa, I. L. (2002a). Adsorption of rhodamine 3B dye on saponite colloidal particles in aqueous suspensions. Langmuir, 18, 2658–2664.

    Article  CAS  Google Scholar 

  • Arbeloa, F. L., Chaudhuri, R., Arbeloa, T. L., & Arbeloa, I. L. (2002b). Aggregation of Rhodamine 3B adsorbed in Wyoming montmorillonite aqueous suspensions. Journal of Colloid and Interface Science, 246, 281–287.

    Article  CAS  Google Scholar 

  • Ardejani, F. D., Badii, K., Limaee, N. Y., Mahmoodi, N. M., Arami, M., Shafaei, S. Z., et al. (2007). Numerical modeling and laboratory studies on the removal of direct red 23 and direct red 80 dyes from textile effluents using orange peel, a low-cost adsorbent. Dyes and Pigments, 73, 178–185.

    Article  CAS  Google Scholar 

  • Armağan, B., Turan, M., & Celik, M. S. (2004). Equilibrium studies on the adsorption of reactive azo dyes into zeolite. Desalination, 170, 33–39.

    Article  CAS  Google Scholar 

  • Attia, A. A., Girgis, B. S., & Fathy, N. A. (2008). Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: Batch and column studies. Dyes and Pigments, 76, 282–289.

    Article  CAS  Google Scholar 

  • Atun, G., & Hisarli, G. (2003). Adsorption of carminic acid, a dye onto glass powder. Chemical Engineering Journal, 95, 241–249.

    Article  CAS  Google Scholar 

  • Atun, G., Hisarli, G., Sheldrick, W. S., & Muhler, M. (2003). Adsorptive removal of methylene blue from colored effluents on fuller’s earth. Journal of Colloid and Interface Science, 261, 32–39.

    Article  CAS  Google Scholar 

  • Aygün, A., Yenisoy-Karakaş, S., & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 66, 189–195.

    Article  CAS  Google Scholar 

  • Azhar, S. S., Liew, A. G., Suhardy, D., Hafiz, K. F., & Hatim, M. D. I. (2005). Dye removal from aqueous solution by using adsorption on treated sugarcane baggase. American Journal of Applied Sciences, 2, 1499–1503.

    Article  CAS  Google Scholar 

  • Banat, F., Al-Asheh, S., & Al-Makhadmeh, L. (2003). Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochemistry, 39, 193–202.

    Article  CAS  Google Scholar 

  • Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology, 58, 217–227.

    Article  CAS  Google Scholar 

  • Batzias, F. A., & Sidiras, D. K. (2004). Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems. Journal of Hazardous Materials, B114, 167–174.

    Article  CAS  Google Scholar 

  • Bayramoğlu, G., & Arıca, M. Y. (2007). Biosorption of benzidine based textile dyes “Direct Blue 1 and Direct Red 128” using native and heat-treated biomass of Trametes versicolor. Journal of Hazardous Materials, 143, 135–143.

    Article  CAS  Google Scholar 

  • Benkli, Y. E., Can, M. F., Turan, M., & Celik, M. S. (2005). Modification of organo- zeolite surface for the removal of reactive azo dyes in fixed bed- reactors. Water Research, 39, 487–493.

    Article  CAS  Google Scholar 

  • Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M., & Addou, A. (2008). Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technology, 99, 8441–8444.

    Article  CAS  Google Scholar 

  • Bhattacharyya, K. G., & Sharma, A. (2003). Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder. Dyes and Pigments, 57, 211–222.

    Article  CAS  Google Scholar 

  • Bhattacharyya, K. G., & Sharma, A. (2004). Azadirachta indica leaf powder as an effective biosorbent for dyes: A case study with aqueous Congo red solutions. Journal of Environmental Management, 71, 217–229.

    Article  Google Scholar 

  • Bouzaida, I., & Rammah, M. B. (2002). Adsorption of acid dyes on treated cotton in a continuous system. Materials Science and Engineering: C, 21, 151–155.

    Article  Google Scholar 

  • Bukallah, S. B., Rauf, M. A., & AlAli, S. S. (2007). Removal of methylene blue from aqueous solution by adsorption on sand. Dyes and Pigments, 74, 85–87.

    Article  CAS  Google Scholar 

  • Chao, A., Shyu, S., Lin, Y., & Mi, F. (2004). Enzymatic grafting of carboxyl groups on to chitosan–to confer on chitosan the property of a cationic dye adsorbent. Bioresource Technology, 91, 157–162.

    Article  CAS  Google Scholar 

  • Chatterjee, S., Chatterjee, S., Chatterjee, B. P., & Guha, A. K. (2007). Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics. Colloids and Surfaces A, 299, 146–152.

    Article  CAS  Google Scholar 

  • Chaudhuri, R., Arbeloa, F. L., & Arbeloa, I. L. (2000). Spectroscopic characterization of the adsorption of Rhodamine 3B in hectorite. Langmuir, 16, 1285–1291.

    Article  CAS  Google Scholar 

  • Chen, B., Hui, C. W., & McKay, G. (2001). Film-pore diffusion modeling and contact time optimization for the adsorption of dyestuffs on pith. Chemical Engineering Journal, 84, 77–94.

    Article  CAS  Google Scholar 

  • Chern, J., & Wu, C. (2001). Desorption of dye from activated carbon beds: Effects of temperature, pH, and alcohol. Water Research, 35, 4159–4165.

    Article  CAS  Google Scholar 

  • Chiou, M., & Li, H. (2002). Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. Journal of Hazardous Materials, B93, 233–248.

    Article  Google Scholar 

  • Chiou, M., & Li, H. (2003). Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 50, 1095–1105.

    Article  CAS  Google Scholar 

  • Chiou, M., Ho, P., & Li, Y. (2004). Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes and Pigments, 60, 69–84.

    Article  CAS  Google Scholar 

  • Choy, K. K. H., McKay, G., & Porter, J. F. (1999). Sorption of acid dyes from effluents using activated carbon. Resources, Conservation and Recycling, 27, 57–71.

    Article  Google Scholar 

  • Choy, K. K. H., Porter, J. F., & McKay, G. (2000). Langmuir, isotherms models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. Journal of Chemical & Engineering Data, 45, 575–584.

    Article  CAS  Google Scholar 

  • Chou, K., Tsai, J., & Lo, C. (2001). The adsorption of congo red and vaccum pump oil by rice hull ash. Bioresource Technology, 78, 217–219.

    Article  CAS  Google Scholar 

  • Ciardelli, G., Corsi, L., & Marucci, M. (2000). Membrane separation for wastewater reuse in the textile industry. Resources, Conservation and Recycling, 31, 189–197.

    Article  Google Scholar 

  • Couillard, D. (1994). The use of peat in wastewater treatment. Water Research, 28, 1261–1274.

    Article  CAS  Google Scholar 

  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97, 1061–1085.

    Article  CAS  Google Scholar 

  • Dabrowski, A. (2001). Adsorption–from theory to practice. Advances in Colloid and Interface Science, 93, 135–224.

    Article  CAS  Google Scholar 

  • Darus, F. M., Hashim, H. J., Laiman, R., & Nizam, D. M. (2005). Use of palm oil fiber, an agricultural waste for removal of methylene blue from aqueous solution. In Prosiding Seminar Kebangsaan Pengurusan Persekitaran 4–5 July, UKM, Bangi (pp. 301–308).

  • Demirbas, E., & Nas, M. Z. (2009). Batch kinetic and equilibrium studies of adsorption of reactive blue 21 by fly ash and sepiolite. Desalination, 243, 8–21.

    Article  CAS  Google Scholar 

  • Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417, 813–821.

    Article  CAS  Google Scholar 

  • Dhalan, I., Lee, K. T., Kamaruddin, A. H., & Mohamed, A. R. (2006). Key factor in rice husk ash/CaO Sorbent for high flue gas desulfurization activity. Environmental Science & Technology, 40, 6032–6037.

    Article  CAS  Google Scholar 

  • Doğan, M., & Alkan, M. (2003). Removal of methyl violet from aqueous solution by perlite. Journal of Colloid and Interface Science, 267, 32–41.

    Article  CAS  Google Scholar 

  • Doğan, M., Alkan, M., Türkyilmaz, A., & Özdemir, Y. (2004). Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, B109, 141–148.

    Google Scholar 

  • Doğan, M., Özdemir, Y., & Alkan, M. (2007). Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes and Pigments, 75, 701–713.

    Article  CAS  Google Scholar 

  • El-Guendi, M. S., Ismail, H. M., & Attyia, K. M. E. (1995). Activated clay as an adsorbent for cationic dye stuffs. Adsorption Science and Technology, 12, 109–117.

    Google Scholar 

  • Elizalde-González, M. P., Mattusch, J., Peláez-Cid, A. A., & Wennrich, R. (2007). Characterization of adsorbent materials prepared from avocado kernel seeds: Natural, activated and carbonized forms. Journal of Analytical and Applied Pyrolysis, 78, 185–193.

    Article  CAS  Google Scholar 

  • Eren, E. (2009). Removal of basic dye by modified Unye bentonite, Turkey. Journal of Hazardous Materials, 162, 1335–1363.

    Article  CAS  Google Scholar 

  • Espantaleón, A. G., Nieto, J. A., Fernández, M., & Marsal, A. (2003). Use of activated clays in the removal of dyes and surfactants from tannery wastewaters. Applied Clay Science, 24, 105–110.

    Article  CAS  Google Scholar 

  • Ferrero, F. (2007). Dye removal by low cost adsorbent: Hazelnut shells in comparison with wood sawdust. Journal of Hazardous Materials, 142, 144–152.

    Article  CAS  Google Scholar 

  • Filho, N. C., Venancio, E. C., Barriquello, M. F., Hechenleitner, A. A., & Pineda, E. A. G. (2007). Methylene blue adsorption onto modified lignin from sugarcane baggasse. Eclética Química, 32, 63–70.

    Google Scholar 

  • Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30, 953–971.

    Article  CAS  Google Scholar 

  • Fu, Y., & Viraraghavan, T. (2001). Fungal decolorization of dye wastewater: A review. Bioresource Technology, 79, 251–262.

    Article  CAS  Google Scholar 

  • Fu, Y., & Viraraghavan, T. (2002a). Dye biosorption sites in Aspergillus niger. Bioresource Technology, 82, 139–145.

    Article  CAS  Google Scholar 

  • Fu, Y., & Viraraghavan, T. (2002b). Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Advances in Environmental Research, 7, 239–247.

    Article  CAS  Google Scholar 

  • Garg, V. K., Gupta, R., Yadav, A. B., & Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89, 121–124.

    Article  CAS  Google Scholar 

  • Garg, V. K., Amita, M., Kumar, R., & Gupta, R. (2004). Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: A timber industry waste. Dyes and Pigments, 63, 243–250.

    Article  CAS  Google Scholar 

  • Ghoreishi, S. M., & Haghighi, R. (2003). Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chemical Engineering Journal, 95, 163–169.

    Article  CAS  Google Scholar 

  • Ghosh, D., & Bhattacharyya, K. G. (2002). Adsorption of methylene blue on kaolinite. Applied Clay Science, 20, 295–300.

    Article  CAS  Google Scholar 

  • Gong, R., Zhu, S., Zhanga, D., Chen, J., Ni, S., & Guan, R. (2008). Adsorption behavior of cationic dyes on citric acid esterifying wheat straw: kinetic and thermodynamic profile. Desalination, 230, 220–228.

    Article  CAS  Google Scholar 

  • Goyal, M., Singh, S., & Bansal, R. C. (2004). Equilibrium and dynamic adsorption of methylene blue from aqueous solutions by surface modified activated carbons. Carbon Science, 5, 170–179.

    Google Scholar 

  • Grabowska, L. E., & Gryglewicz, G. (2007). Adsorption characteristics of Congo red on coal- based mesoporous activated carbon. Dyes and Pigments, 74, 34–40.

    Article  CAS  Google Scholar 

  • Gulnaz, O., Kaya, A., Matyar, F., & Arikan, B. (2004). Sorption of basic dyes from aqueous solution by activated sludge. Journal of Hazardous Materials, B108, 183–188.

    Article  CAS  Google Scholar 

  • Guo, Y., Yang, S., Fu, W., Qi, J., Li, R., Wang, Z., et al. (2003). Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dyes and Pigments, 56, 219–229.

    Article  CAS  Google Scholar 

  • Guo, Y., Zhao, J., Hui, Z., Yang, S., Qi, J., Wang, Z., et al. (2005). Use of rice husk- based porous carbon for adsorption of rhodamine B from aqueous solution. Dyes and Pigments, 66, 123–128.

    Article  CAS  Google Scholar 

  • Gupta, G. S., & Shukla, S. P. (1996). An inexpensive adsorption technique for the treatment of carpet effluents by low cost materials. Adsorption Science and Technology, 13, 15–26.

    CAS  Google Scholar 

  • Gupta, V. K., & Suhas (2009). Application of low-cost adsorbents for dye removal—A review. Journal of Environmental Management, 90, 2313–2342.

    Article  CAS  Google Scholar 

  • Gupta, G. S., Prasad, G., & Singh, V. N. (1990). Removal of chrome dye from aqueous solutions by mixed adsorbents: Fly ash and coal. Water Research, 24, 45–50.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Ali, I., Suhas, & Mohan, D. (2003). Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents. Journal of Colloid and Interface Science, 265, 257–264.

    Article  CAS  Google Scholar 

  • Gürses, A., Karaca, S., Dogar, C., Bayrak, R., Acikyildiz, M., & Yalcin, M. (2004). Determination of adsorptive properties of clay/water system: methylene blue sorption. Journal of Colloid and Interface Science, 269, 310–314.

    Article  CAS  Google Scholar 

  • Gürses, A., Dogar, C., Yalcin, M., Acikyildiz, M., Bayrak, R., & Karaca, S. (2006). The adsorption kinetics of the cationic dye, methylene blue onto clay. Journal of Hazardous Materials, 131, 217–228.

    Article  CAS  Google Scholar 

  • Hameed, B. H. (2009). Removal of cationic dye from aqueous solution using jackfruit peel as a non-conventional and low-cost adsorbent. Journal of Hazardous Materials, 162, 344–350.

    Article  CAS  Google Scholar 

  • Hameed, B. H., & Ahmad, A. A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Journal of Hazardous Materials, 164, 870–875.

    Article  CAS  Google Scholar 

  • Hameed, B. H., Mahmoud, D. K., & Ahmad, A. L. (2008). Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids and Surfaces A, 316, 78–84.

    Article  CAS  Google Scholar 

  • Han, R. P., Wnag, Y. F., Han, P.,Yang, J., & Lu, Y. S. (2006). Removal of methylene blue from aqueous solution by chaff in batch mode. Journal of Hazardous Materials, 137, 550–557.

    Article  CAS  Google Scholar 

  • Han, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y., et al. (2008). Use of rice husk for the adsorption of Congo red from aqueous solution in column mode. Bioresource Technology, 99, 2938–2946.

    Article  CAS  Google Scholar 

  • Harris, R. G., Wells, J. D., & Johnson, B. B. (2001). Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces. Colloids and Surfaces A, 180, 131–140.

    Article  CAS  Google Scholar 

  • Hegde, D. M., & Srinivas, K. (1991). Growth yield, nutrient uptake, and water uses of banana crops under drip and basic irrigation with N and K fertilization. Tropical Agriculture, 68, 331–334.

    Google Scholar 

  • Ho, Y. S., & McKay, G. (1998a). Kinetic models for the sorption of dye from aqueous solution by wood. Trans IChemE, 76B, 183–191.

    Google Scholar 

  • Ho, Y. S., & McKay, G. (1998b). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70, 115–124.

    CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2003). Sorption of dyes and copper ions onto biosorbents. Process Biochemistry, 38, 1047–1061.

    Article  CAS  Google Scholar 

  • Ho, Y., Chiang, C. C., & Hsu, Y. C. (2001). Sorption kinetics for the dye removal from aqueous solution using activated clay. Separation Science and Technology, 36, 2473–2488.

    Article  CAS  Google Scholar 

  • Ho, Y., Chiu, W., & Wang, C. (2005a). Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresource Technology, 96, 1285–1291.

    Article  CAS  Google Scholar 

  • Ho, Y., Chiang, T., & Hsueh, Y. (2005b). Removal of basic dye from aqueous solution using tree fern as a biosorbent. Process Biochemistry, 40, 119–124.

    Article  CAS  Google Scholar 

  • Hsu, T. (2008). Adsorption of an acid dye onto coal fly ash. Fuel, 87, 3040–3045.

    Article  CAS  Google Scholar 

  • Hu, Q. H., Qiao, S. Z., Haghseresht, F., Wilson, M. A., & Lu, G. Q. (2006). Adsorption study for the removal of basic red dye using bentonite. Industrial & Engineering Chemistry Research, 45, 733–738.

    Article  CAS  Google Scholar 

  • Huang, J. H., Liu, Y. F., Jin, Q. Z., Wang, X. G., & Yang, J. (2007). Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay. Journal of Hazardous Materials, 143, 541–548.

    Article  CAS  Google Scholar 

  • Ibrahim, N. A., Hashem, A., & Abou-Shosha, M. H. (1997). Animation of wood sawdust for removing anionic dyes from aqueous solutions. Polymer - Plastics Technology and Engineering, 36, 963–971.

    Article  CAS  Google Scholar 

  • Jain, A. K., Gupta, V. K., Bhatnagar, A., & Suhas (2003). Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials, B101, 31–42.

    Article  CAS  Google Scholar 

  • Jain, R., Mathur, M., Sikarwar, S., & Mittal, A. (2007). Removal of the hazardous dye Rhodamine B through photocatalytic and adsorption treatments. Journal of Environmental Management, 85, 956–964.

    Article  CAS  Google Scholar 

  • Janoš, P., Buchtová, H., & Ryznarová, M. (2003). Sorption of dyes from aqueous solutions onto fly ash. Water Research, 37, 4938–4944.

    Article  CAS  Google Scholar 

  • Janoš, P., Coskun, S., Pilarova, V., & Rejnek, J. (2008). Removal of basic (Methylene blue) and acid (Egacid Orange) dyes from water by sorption on chemically treated wood shavings. Bioresource Technology, 100, 1450–1453.

    Article  CAS  Google Scholar 

  • Jinqi, L., & Houtian, L. (1992). Degradation of azo dyes by algae. Environmental Pollution, 75, 273–278.

    Article  CAS  Google Scholar 

  • Jirankova, H., Cakl, J., Markvartova, O., & Dolecek, P. (2007). Combined membrane process at wastewater treatment. Separation and Purification Technology, 58, 299–303.

    Article  CAS  Google Scholar 

  • Joo, D. J., Shin, W. S., Choi, J., Choi, S. J., Kim, M., Han, M. H., et al. (2007). Decolorization of reactive dyes using inorganic coagulants and synthetic polymer. Dyes and Pigments, 73, 59–64.

    Article  CAS  Google Scholar 

  • Juang, R., Wu, F., & Tseng, R. (2000). Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels. Journal of Colloid and Interface Science, 227, 437–444.

    Article  CAS  Google Scholar 

  • Juang, R., Wu, F., & Tseng, R. (2002a). Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption. Colloids and Surfaces A, 201, 191–199.

    Article  CAS  Google Scholar 

  • Juang, R., Wu, F., & Tseng, R. (2002b). Use of chemically modified chitosan beads for sorption and enzyme immobilization. Advances in Environmental Research, 6, 171–177.

    Article  CAS  Google Scholar 

  • Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., & Pattabhi, S. (2003). Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresource Technology, 87, 129–132.

    Article  CAS  Google Scholar 

  • Kahr, G., & Madsen, F. T. (1995). Determination of cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Applied Clay Science, 9, 327–336.

    Article  CAS  Google Scholar 

  • Kannan, N., & Sundaram, M. M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—A comparative study. Dyes and Pigments, 51, 25–40.

    Article  CAS  Google Scholar 

  • Karaca, S., Gürses, A., & Bayrak, R. (2004). Effect of some pre-treatments on the adsorption of methylene blue by Balkaya lignite. Energy Conversion and Management, 45, 1693–1704.

    Article  CAS  Google Scholar 

  • Karadag, D., Akgul, E., Tok, S., Erturk, F., Kaya, M. A., & Turan, M. (2007). Basic and reactive dye removal using natural and modification zeolites. Journal of Chemical & Engineering Data, 52, 2436–2441.

    Article  CAS  Google Scholar 

  • Karagöz, S., Tay, T., Ucar, S., & Erdem, M. (2008). Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource Technology, 99, 6214–6222.

    Article  CAS  Google Scholar 

  • Karanfil, T., Dastgheib, S. A., & Maluldin, D. (2006). Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption. Environmental Science & Technology, 40, 1321–1327.

    Article  CAS  Google Scholar 

  • Karcher, S., Kornm, A., & Jekel, M. (2001). Screening of commercial sorbents for the removal of reactive dyes. Dyes and Pigments, 51, 25–40.

    Article  Google Scholar 

  • Karcher, S., Kornm, A., & Jekel, M. (2002). Anion exchange resins for the removal of reactive dyes from textile wastewaters. Water Research, 36, 4717–4724.

    Article  CAS  Google Scholar 

  • Kargi, F., & Ozmıhcı, S. (2004). Biosorption performance of powdered activated sludge for removal of different dyestuffs. Enzyme and Microbial Technology, 35, 267–271.

    Article  CAS  Google Scholar 

  • Karim, A. B., Mounir, B., Hachkar, M., Bakasse, M., & Yaacoubi, A. (2009). Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay. Journal of Hazardous Materials, 168, 304–309.

    Article  CAS  Google Scholar 

  • Kaushik, P., & Malik, A. (2009). Fungal dye decolourization: Recent advances and future potential. Environment International, 35, 127–141.

    Article  CAS  Google Scholar 

  • Khattri, S., & Singh, M. K. (1998). Colour removal from aqueous solutions by adsorption. Indian Journal of Chemical Technology, 5, 230–234.

    CAS  Google Scholar 

  • Khattri, S., & Singh, M. K. (1999). Colour removal from dye wastewater using sugarcane dust as an adsorbent. Adsorption Science and Technology, 17, 269–282.

    CAS  Google Scholar 

  • Khattri, S., & Singh, M. K. (2000). Colour removal from synthetic dye wastewater using a bioadsorbent. Water, Air, and Soil Pollution, 120, 283–294.

    Article  CAS  Google Scholar 

  • Koch, M., Yediler, A., Lienert, G., Insel, G., & Kettrup, A. (2002). Ozonation of hydrolyzed azo dye reactive yellow 84 (CI). Chemosphere, 46, 109–113.

    Article  CAS  Google Scholar 

  • Kumar, K. V., & Kumrana, A. (2005). Removal of methylene blue by mango seed kernel powder. Biochemical Engineering Journal, 27, 83–93.

    Article  CAS  Google Scholar 

  • Kumar, K. V., & Porkodi, K. (2006). Relation between some two- and three-parameter isotherm models for the sorption of methylene blue onto lemon peel. Journal of Hazardous Materials, 138, 633–635.

    Article  CAS  Google Scholar 

  • Kumar, K. V., & Sivanesan, S. (2007). Sorption isotherm for safranine onto rice husk: Comparison of linear and non-linear methods. Dyes and Pigments, 72, 130–133.

    Article  CAS  Google Scholar 

  • Lakshmi, U. R., Srivastva, V. C., Mall, I. D., & Lataye, D. H. (2009). Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for indigo Carmine dye. Journal of Environmental Management, 90, 710–720.

    Article  CAS  Google Scholar 

  • Lata, H., Garg, V. K., & Gupta, R. K. (2007). Removal of a basic dye from aqueous solution by adsorption using Parthenium hysterophorus: An agricultural waste. Dyes and Pigments, 74, 653–658.

    Article  CAS  Google Scholar 

  • Lataye, D. H., Mishra, I. M., & Mall, I. D. (2006). Removal of pyridine from aqueous solution by adsorption on baggase fly ash. Industrial & Engineering Chemistry Research, 45, 3934–3943.

    Article  CAS  Google Scholar 

  • Lataye, D. H., Mishra, I. M., & Mall, I. D. (2009). Adsorption of α-picoline onto rice husk ash and granular activated carbon from aqueous solution: Equilibrium and thermodynamic study. Chemical Engineering Journal, 147, 139–149.

    Article  CAS  Google Scholar 

  • Li, Q., Snoeyink, V. L., Campos, C., & Marias, B. J. (2002). Displacement effect of NOM on Atrazine adsorption by PACs with different pore size distribution. Environmental Science & Technology, 36, 1510–1515.

    Article  CAS  Google Scholar 

  • Li, H., Teppen, B. J., Johnston, C. T., & Boyd, S. A. (2004). Environ. Thermodynamics of nitroaromatic compound adsorption from water by smectite clay. Environmental Science & Technology, 38, 5433–5442.

    Article  CAS  Google Scholar 

  • Li, W., Li, D., Chen, Z., Huang, H., Sun, M., He, Y., & Fu, X. (2008). High-efficient degradation of dyes by ZnCdS solid solutions under visible irradiation. The Journal of Physical Chemistry C, 38, 14943–14947.

    Article  CAS  Google Scholar 

  • Liu, P., & Guo, J. S. (2006). Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg(II) ion and dyes. Colloids and Surfaces A, 282–283, 498–503.

    Article  CAS  Google Scholar 

  • Liu, P., & Zhang, L. (2007). Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Separation and Purification Technology, 58, 32–39.

    Article  CAS  Google Scholar 

  • Liu, G., Ma, J., Li, X., & Qin, Q. (2009). Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. Journal of Hazardous Materials, 164, 1275–1280.

    Article  CAS  Google Scholar 

  • Liversidge, R. M., Lloyd, G. J., Wase, D. A. J., & Forster, C. F. (1997). Removal of basic blue 41 dye from aqueous solution by linseed cake. Process Biochemistry, 32, 473–477.

    Article  CAS  Google Scholar 

  • Magdy, Y. H., & Daifullah, A. A. M. (1998). Adsorption of a basic dye from aqueous solutions onto sugar- industry-mud in two modes of operations. Waste Management, 18, 219–226.

    Article  CAS  Google Scholar 

  • Malik, P. K. (2003). Use of activated carbons prepared from sawdust and rice- husk for adsorption of acid dyes: a case study of acid yellow 36. Dyes and Pigments, 56, 239–249.

    Article  CAS  Google Scholar 

  • Malik, P. K., & Saha, S. K. (2003). Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology, 31, 241–250.

    Article  CAS  Google Scholar 

  • Mane, V. S., Mall, I. D., & Srivastava, V. C. (2007a). Kinetic and equilibrium isotherm studies for the adsorptive removal of brilliant green dye from aqueous solution by rice husk ash. Journal of Environmental Management, 84, 390–400.

    Article  CAS  Google Scholar 

  • Mane, V. S., Mall, I. D., & Srivastava, V. C. (2007b). Use of baggase fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes and Pigments, 73, 269–278.

    Article  CAS  Google Scholar 

  • Martin, M. J., Artola, A., Balaguer, M. D., & Rigola, M. (2003). Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chemical Engineering Journal, 94, 231–239.

    Article  CAS  Google Scholar 

  • Marugan, J., Munoz-Lopez, J., van Grieken, R., & Aguado, J. (2007). Photocatalytic decolorization and mineralization of dyes with nanocrystalline TiO2/SiO2 materials. Industrial & Engineering Chemistry Research, 46, 7605–7610.

    Article  CAS  Google Scholar 

  • McKay, G., Otterburn, M. S., & Agr, J. A. (1985). Fuller earth and fired clay as adsorbents for dyestuffs—Equilibrium and rate studies. Water, Air, and Soil Pollution, 24, 307–322.

    Article  CAS  Google Scholar 

  • McKay, G., El-Geundi, M., & Nassar, M. M. (1987). Equilibrium studies during the removal of dyestuffs from aqueous solutions using baggase pith. Water Research, 21, 1513–1520.

    Article  CAS  Google Scholar 

  • McKay, G., Allen, S. J., McConvey, I. F., & Otterburn, M. S. (1981). Transport processes in the sorption of colored ions by wood particles. Journal of Colloid and Interface Science, 80, 323–339.

    Article  CAS  Google Scholar 

  • McKay, G., Geundi, M. E., & Nassar, M. M. (1996). Pore diffusion during the adsorption of dyes onto bagasse pith. Trans IChemE, 74, 277–288.

    CAS  Google Scholar 

  • McKay, G., Porter, J. F., & Prasad, G. R. (1999). The removal of dye colors from aqueous solutions by adsorption on low-cost materials. Water, Air, and Soil Pollution, 114, 423–438.

    Article  CAS  Google Scholar 

  • McKay, G., Sze, F., & Fan, M. (2008). The removal of organic pollutant from industrial effluents via tapered bed adsorption column. International Journal of Environmental Technology and Management, 9, 20–33.

    Article  CAS  Google Scholar 

  • Mittal, A. (2006). Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. Journal of Hazardous Materials, B133, 196–202.

    Article  CAS  Google Scholar 

  • Mittal, A., Mittal, J., & Kurup, L. (2006a). Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption. Journal of Hazardous Materials, 137, 591–602.

    Article  CAS  Google Scholar 

  • Mittal, A., Mittal, J., & Kurup, L. (2006b). Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, tatrazine from aqueous solutions using waste materials: - Bottom ash and de-oiled soya, as adsorbents. Journal of Hazardous Materials, 136, 567–578.

    Article  CAS  Google Scholar 

  • Mohamed, M. M. (2004). Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk. Journal of Colloid and Interface Science, 272, 28–34.

    Article  CAS  Google Scholar 

  • Mohan, D., Singh, K. P., Singh, G., & Kumar, K. (2002a). Removal of dyes from wastewater using flyash, a low-cost adsorbent. Industrial & Engineering Chemistry Research, 46, 3688–3695.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Rao, N. C., & Karthikeyan, J. (2002b). Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: A kinetic and mechanistic study. Journal of Hazardous Materials, B90, 189–204.

    Article  Google Scholar 

  • Mohanty, K., Naidu, J. T., Meikap, B. C., & Biswas, M. N. (2006). Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Industrial & Engineering Chemistry Research, 45, 5165–5171.

    Article  CAS  Google Scholar 

  • Morais, L. C., Freitas, O. M., Gonçalves, E. P., Vasconcelos, L. T., & Beça, C. G. G. (1999). Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: Variables that define the process. Water Research, 33, 979–988.

    Article  CAS  Google Scholar 

  • Nakagawa, K., Namba, A., Mukai, S. R., Tamon, H., Ariyadejwanich, P., & Tanthapanichakoon, W. (2004). Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes. Water Research, 38, 1791–1798.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Arasi, D. J. S. E. (1997). Removal of Congo red from wastewater by adsorption onto waste red mud. Chemosphere, 34, 401–417.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Kadirvelu, K. (1994). Coirpith, an agricultural waste byproduct, for the treatment of dyeing wastewater. Bioresource Technology, 48, 79–81.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Kavita, D. (2002). Removal of Congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments, 54, 47–58.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Sumithra, S. (2005). Removal of direct red 12B and methylene blue from water by adsorption onto Fe (III)/Cr (III) hydroxide, an industrial solid waste. Journal of Environmental Management, 74, 207–215.

    Article  CAS  Google Scholar 

  • Namasivayam, C., Kanchana, N., & Yamuna, R. T. (1993). Waste banana pith as adsorbent for the removal of Rhodamine-B from aqueous solutions. Waste Management, 13, 89–95.

    Article  CAS  Google Scholar 

  • Namasivayam, C., Jeyakumar, R., & Yamuna, R. T. (1994). Dye removal from wastewater by adsorption on ‘waste’ Fe(III)/Cr(III) hydroxide. Waste Management, 14, 643–648.

    Article  CAS  Google Scholar 

  • Namasivayam, C., Muniasamy, N., Gayatri, K., Rani, M., & Ranganathan, K. (1996). Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology, 57, 37–43.

    Article  Google Scholar 

  • Namasivayam, C., Prabha, D., & Kumutha, M. (1998). Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresource Technology, 64, 77–79.

    Article  CAS  Google Scholar 

  • Namasivayam, C., Radhika, R., & Suba, S. (2001a). Uptake of dyes by a promising locally available agricultural solid waste: Coir pith. Waste Management, 21, 381–387.

    Article  CAS  Google Scholar 

  • Namasivayam, C., Kumar, M. D., Selvi, K., Begum, R. A., Vanathi, T., & Yamuna, R. T. (2001b). ‘Waste’ coir pith—A potential biomass for the treatment of dyeing wastewaters. Biomass & Bioenergy, 21, 477–483.

    Article  CAS  Google Scholar 

  • Nasreen, Z., Bajwa, R., & Kusar, T. (2007). Decolorization of textile dyes and their effluents using white red fungi. Mycopath, 5, 49–52.

    Google Scholar 

  • Nassar, M. M., & Magdy, Y. H. (1997). Removal of different basic dyes from aqueous solutions by adsorption on palm-fruit bunch particles. Chemical Engineering Journal, 66, 223–226.

    Article  CAS  Google Scholar 

  • Navarro, A. E., Cuizano, N. A., Lazo, J. C., Sun-Kou, M. R., & Llanos, B. P. (2009). Comparative study of the removal of phenolic compounds by biological and non-biological adsorbents. Journal of Hazardous Materials, 164, 1439–1446.

    Article  CAS  Google Scholar 

  • Netpradit, S., Thiravetyan, P., & Towprayoon, S. (2003). Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Research, 37, 763–772.

    Article  CAS  Google Scholar 

  • Netpradit, S., Thiravetyan, P., & Towprayoon, S. (2004a). Adsorption of three azo reactive dyes by metal hydroxide sludge: Effect of temperature, pH, and electrolytes. Journal of Colloid and Interface Science, 270, 255–261.

    Article  CAS  Google Scholar 

  • Netpradit, S., Thiravetyan, P., & Towprayoon, S. (2004b). Evaluation of metal hydroxide sludge for reactive dye adsorption in a fixed-bed column system. Water Research, 38, 71–78.

    Article  CAS  Google Scholar 

  • Neumann, M. G., Gessner, F., Schmitt, C. C., & Sartori, R. (2002). Influence of the layer charge and clay particle size on the interactions between the cationic dye methylene blue and clays in an aqueous suspension. Journal of Colloid and Interface Science, 255, 254–259.

    Article  CAS  Google Scholar 

  • Newman, R. H. (1997). Crystalline forms of cellulose in the silver tree fern Cyathea dealbata. Cellulose, 4, 269–279.

    Article  CAS  Google Scholar 

  • Nigam, P., Banat, I. M., Singh, D., & Marchant, R. (1996). Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 31, 435–442.

    Article  CAS  Google Scholar 

  • Nigam, P., Armour, G., Banat, I. M., Singh, D., & Marchant, R. (2000). Physical removal of textile dyes from e.uents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technology, 72, 219–226.

    Article  CAS  Google Scholar 

  • Noroozi, B., Sorial, G. A., Bahrami, H., & Arami, M. (2008). Adsorption of binary mixtures of cationic dyes. Dyes and Pigments, 76, 784–791.

    Article  CAS  Google Scholar 

  • Oei, B. C., Ibrahim, S., Wang, S., & Ang, H. A. (2009). Surfactant modified barley straw for removal of acid and reactive dyes from aqueous solution. Bioresource Technology, 100, 4292–4295.

    Article  CAS  Google Scholar 

  • O’Mahony, T., Guibal, E., & Tobin, J. M. (2002). Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme and Microbial Technology, 31, 456–463.

    Article  Google Scholar 

  • Ofomaja, A. E. (2007). Sorption dynamics and isotherm studies of methylene blue uptake on to palm kernel fibre. Chemical Engineering Journal, 126, 35–43.

    Article  CAS  Google Scholar 

  • Ofomaja, A. E. (2008a). Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chemical Engineering Journal, 143, 85–95.

    Article  CAS  Google Scholar 

  • Ofomaja, A. E. (2008b). Sorptive removal of methylene blue from aqueous solution using palm kernel fibre: Effect of fibre dose. Biochemical Engineering Journal, 40, 8–18.

    Article  CAS  Google Scholar 

  • Ofomaja, A. E., & Ho, Y. S. (2007). Effect of pH on cadmium biosorption by coconut copra meal. Journal of Hazardous Materials, B139, 356–362.

    Article  CAS  Google Scholar 

  • Okada, K., Yamamoto, N., Kameshima, Y., & Yasumori, A. (2003). Adsorption properties of activated carbon from waste newspaper prepared by chemical and physical activation. Journal of Colloid and Interface Science, 262, 194–199.

    Article  CAS  Google Scholar 

  • Orthman, J., Zhu, H. Y., & Lu, G. Q. (2003). Use of anion clay hydrotalcite to remove coloured organics from aqueous solutions. Separation and Purification Technology, 31, 53–59.

    Article  CAS  Google Scholar 

  • Otero, M., Rozada, F., Calvo, L. F., García, A. I., & Morán, A. (2003a). Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dyes and Pigments, 57, 55–65.

    Article  CAS  Google Scholar 

  • Otero, M., Rozada, F., Calvo, L. F., García, A. I., & Morán, A. (2003b). Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges. Biochemical Engineering Journal, 15, 59–68.

    Article  CAS  Google Scholar 

  • Özacar, M., & Sengil, İ. A. (2003). Adsorption of reactive dyes on calcined alunite from aqueous solutions. Journal of Hazardous Materials, B98, 211–224.

    Article  CAS  Google Scholar 

  • Özacar, M., & Şengil, İ. A. (2005). Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresource Technology, 96, 791–795.

    Article  CAS  Google Scholar 

  • Özacar, M., & Sengil, İ. A. (2006). A two stage batch adsorber design for methylene blue removal to minimize contact time. Journal of Environmental Management, 80, 372–379.

    Article  CAS  Google Scholar 

  • Özcan, A. S., Erdem, B., & Özcan, A. (2004). Adsorption of Acid Blue 193 from aqueous solutions onto Na-bentonite and DTMA- bentonite. Journal of Colloid and Interface Science, 280, 44–54.

    Article  CAS  Google Scholar 

  • Ozdemir, O., Armağan, B., Turan, M., & Celik, M. S. (2004). Comparison of the adsorption characteristics of azo-reactive dyes on mesoporous minerals. Dyes and Pigments, 62, 49–60.

    Article  CAS  Google Scholar 

  • Ozdemir, Y., Dogan, M., & Alkan, M. (2006). Adsorption of cationic dyes from aqueous solutions by sepiolite. Microporous and Mesoporous Materials, 96, 419–427.

    Article  CAS  Google Scholar 

  • Özer, A., & Dursun, G. (2007). Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon. Journal of Hazardous Materials, 146, 262–269.

    Article  CAS  Google Scholar 

  • Pala, A., & Tokat, E. (2002). Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Research, 36, 2920–2925.

    Article  CAS  Google Scholar 

  • Panda, G. C., Das, S. K., & Guha, A. K. (2008). Jute stick powder as a potential biomass for the removal of Congo red and rhodamine B from their aqueous solution. Journal of Hazardous Materials, 164, 374–379.

    Article  CAS  Google Scholar 

  • Panswed, J., & Wongchaisuwan, S. (1986). Mechanism of dye wastewater color removal by magnesium carbonate-hydrated basic. Water Science and Technology, 18, 139–144.

    Google Scholar 

  • Pauporte, T., & Rathousky, J. (2007). Electrodeposited mesoporous ZnO thin films as efficient photocatalyst for the degradation of dye pollutants. The Journal of Physical Chemistry C, 111, 7639–7644.

    Article  CAS  Google Scholar 

  • Pavan, F. A., Gushikem, Y., Mazzoczto, A. C., Dias, S. L. P., & Lima, E. C. (2007). Statistical design of experiments as a tool for optimizing the batch conditions to methylene blue biosorption on yellow passion fruit and mandarin peels. Dyes and Pigments, 72, 256–266.

    Article  CAS  Google Scholar 

  • Pavan, F. A., Lima, E. C., Dias, S. L. P., & Mazzocata, A. C. (2008a). Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. Journal of Hazardous Materials, 150, 703–712.

    Article  CAS  Google Scholar 

  • Pavan, F. A., Dias, S. L. P., Lima, E. C., & Benvenutti, E. V. (2008b). Removal of Congo red from aqueous solution by anilinepropylsilica xerogel. Dyes and Pigments, 76, 64–69.

    Article  CAS  Google Scholar 

  • Pereira, M. F. R., Soares, S. F., Órfão, J. J. M., & Figueiredo, J. L. (2003). Adsorption of dyes on activated carbons: Influence of surface chemical groups. Carbon, 41, 811–821.

    Article  CAS  Google Scholar 

  • Ponnusami, V., Madhuram, R., Krithika, V., & Srivastva, S. N. (2008). Effects of process variables on kinetics of methylene blue onto untreated guava powder: Statistical analysis. Chemical Engineering Journal, 140, 609–613.

    Article  CAS  Google Scholar 

  • Poots, V. J. P., McKay, G., & Healy, J. J. (1976). The removal of acid dye from effluent using natural adsorbents-I peat. Water Research, 10, 1061–1066.

    Article  CAS  Google Scholar 

  • Punjongharn, P., Meevasana, K., & Pavasant, P. (2008). Influence of particle size and salinity on adsorption of basic dyes by agricultural waste: Dried Seagrape (Caulerpa lentillifera). Journal of Environmental Sciences, 20, 760–768.

    Article  CAS  Google Scholar 

  • Purkait, M. K., Das, G. S., & De, S. (2005). Adsorption of eosin dye on activated carbon and its surfactant based desorption. Journal of Environmental Management, 76, 135–142.

    Article  CAS  Google Scholar 

  • Qiu, M., Qian, C., Xu, J., Wu, J., & Wang, G. (2009). Studies on the adsorption of dyes into clinoptilolite. Desalination, 243, 286–292.

    Article  CAS  Google Scholar 

  • Raghuvanshi, S. P., Singh, R., & Kaushik, C. P. (2004). Kinetics study of methylene blue dye bioadsorption on baggase. Applied Ecology and Environmental Research, 2, 35–43.

    Google Scholar 

  • Rajeshwarisivaraj, A., Sivakumar, S., Senthilkumar, P., & Subburam, V. (2001). Carbon from cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution. Bioresource Technology, 80, 233–235.

    Article  CAS  Google Scholar 

  • Ramakrishna, K. R., & Viraraghavan, T. (1997). Use of slag for dye removal. Waste Management, 17, 483–488.

    Article  CAS  Google Scholar 

  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.

    Article  CAS  Google Scholar 

  • Robinson, T., Chandran, B., & Nigam, P. (2002a). Studies on desorption of individual textile dyes and a synthetic dye effluent from dye-adsorbed agricultural residues using solvents. Bioresource Technology, 84, 299–301.

    Article  CAS  Google Scholar 

  • Robinson, T., Chandran, B., & Nigam, P. (2002b). Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk. Environment International, 28, 29–33.

    Article  CAS  Google Scholar 

  • Robinson, T., Chandran, B., & Nigam, P. (2002c). Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research, 36, 2824–2830.

    Article  CAS  Google Scholar 

  • Royer, B., Cardoso, N. F., Lima, E. C., Vaghetti, J. C. P., Simon, N. M., Calvete, T., et al. (2009). Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions—Kinetic and equilibrium study. Journal of Hazardous Materials, 164, 1213–1222.

    Article  CAS  Google Scholar 

  • Rozada, F., Calvo, L. F., Garcia, A. I., Martin-Villacorta, J., & Otero, M. (2003). Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresource Technology, 87, 221–230.

    Article  CAS  Google Scholar 

  • Sarma, J., Sarma, A., & Bhattacharyya, K. G. (2008). Biosorption of commercial dyes on Azadiracta indica leaf powder: A case study with a basic dye Rhodamine B. Industrial & Engineering Chemistry Research, 47, 5433–5440.

    Article  CAS  Google Scholar 

  • Sathiya Moorthi, P., Periyar selvam, S., Sasikalaveni, A., Murugesan, K., & Kalaichelvan, P. T. (2007). Decolorization of textile dyes and their effluents using white rot fungi. African Journal of Biotechnology, 6, 424–429.

    Google Scholar 

  • Sawada, K., & Ueda, M. (2003). Adsorption behavior of direct dye on cotton in non-aqueous media. Dyes and Pigments, 58, 37–40.

    Article  CAS  Google Scholar 

  • Senthilkumaar, S., Varadarajan, P. R., Porkodi, K., & Subbhuraam, C. V. (2005). Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. Journal of Colloid and Interface Science, 284, 78–82.

    Article  CAS  Google Scholar 

  • Senthilkumaar, S., Kalaamani, P., Porkodi, K., Varadarajan, P. R., & Subburaam, C. V. (2006). Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. Bioresource Technology, 97, 1618–1625.

    Article  CAS  Google Scholar 

  • Shawabkeh, R. A., & Tutunji, M. F. (2003). Experimental study and modeling of basic dye sorption by diatomaceous clay. Applied Clay Science, 24, 111–120.

    Article  CAS  Google Scholar 

  • Shichi, T., & Takagi, K. (2000). Clay minerals as photochemical reaction fields. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 113–130.

    Article  CAS  Google Scholar 

  • Shukla, A., Zhang, Y., Dubey, P., Margrave, J. L., & Shukla, S. S. (2002). The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials, B95, 137–152.

    Article  Google Scholar 

  • Sivaraj, R., Namasivayam, C., & Kadirvelu, K. (2001). Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Management, 21, 105–110.

    Article  CAS  Google Scholar 

  • Sun, Q., & Yang, L. (2003). The adsorption of basic dyes from aqueous solution on modified peat- resin particle. Water Research, 37, 1535–1544.

    Article  CAS  Google Scholar 

  • Swamy, J., & Ramsay, J. A. (1999). The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme and Microbial Technology, 24, 130–137.

    Article  CAS  Google Scholar 

  • Tahir, S. S., & Rauf, N. (2006). Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere, 63, 1842–1848.

    Article  CAS  Google Scholar 

  • Tamai, H., Yoshida, T., Sasaki, M., & Yasuda, H. (1999). Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex. Carbon, 37, 983–989.

    Article  CAS  Google Scholar 

  • Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2008). Adsorption of basic dye using activated carbon prepared from oil palm shell: Batch and fixed bed studies. Desalination, 225, 13–28.

    Article  CAS  Google Scholar 

  • Tsai, W. T., Chang, C. Y., Lin, M. C., Chien, S. F., Sun, H. F., & Hsieh, M. F. (2001). Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere, 45, 51–58.

    Article  CAS  Google Scholar 

  • Tseng, R. (2007). Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation. Journal of Hazardous Materials, 147, 1020–1027.

    Article  CAS  Google Scholar 

  • Tseng, R., Wu, F., & Juang, R. (2003). Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon, 41, 487–495.

    Article  CAS  Google Scholar 

  • Uddin, M. T., Islam, M. A., Mahmud, S., & Rukanuzzaman, M. (2008). Adsorptive removal of methylene blue by tea waste. Journal of Hazardous Materials, 164, 53–60.

    Article  CAS  Google Scholar 

  • Vachoud, L., Zydowicz, N., & Domard, A. (2001). Sorption and desorption studies on chitin gels. International Journal of Biological Macromolecules, 28, 93–101.

    Article  CAS  Google Scholar 

  • Valix, M., Cheung, W. H., & McKay, G. (2004). Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere, 56, 493–501.

    Article  CAS  Google Scholar 

  • Viraraghavan, T., & Ayyaswami, A. (1987). Use of peat in water pollution control: A review. Canadian Journal of Civil Engineering, 14, 230–233.

    Article  Google Scholar 

  • Walker, G. M., Hansen, L., Hanna, J. A., & Allen, S. J. (2003). Kinetics of a reactive dye adsorption onto dolomitic sorbents. Water Research, 37, 2081–2089.

    Article  CAS  Google Scholar 

  • Wang, L., & Wang, A. (2007). Adsorption characteristics of Congo red onto the chitosan/ montmorillonite nanocomposite. Journal of Hazardous Materials, 147, 979–985.

    Article  CAS  Google Scholar 

  • Wang, S., & Zhu, Z. H. (2007). Effects of acidic treatment of activated carbons on dye adsorption. Dyes and Pigments, 75, 306–314.

    Article  CAS  Google Scholar 

  • Wang, C., Juang, L., Hsu, T., Lee, C., Lee, J., & Huang, F. (2004). Adsorption of basic dyes onto montmorillonite. Journal of Colloid and Interface Science, 273, 80–86.

    Article  CAS  Google Scholar 

  • Wang, S., Boyjoo, Y., Choueib, A., & Zhu, Z. H. (2005). Removal of dyes from aqueous solution using fly ash and red mud. Water Research, 39, 129–138.

    Article  CAS  Google Scholar 

  • Wang, C., Lee, C., Lyu, M., & Juang, L. (2008). Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters. Dyes and Pigments, 76, 817–824.

    Article  CAS  Google Scholar 

  • Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M., & Upatham, E. S. (2003). Kinetics of basic dye (methylene blue) biosorption by giantduckweed (Spirodela polyrrhiza). Environmental Pollution, 125, 385–392.

    Article  CAS  Google Scholar 

  • Weng, C., & Pan, Y. (2006). Adsorption characteristics of methylene blue from aqueous solution by sludge ash. Colloids and Surfaces A, 274, 154–162.

    Article  CAS  Google Scholar 

  • Weng, C., & Pan, Y. (2007). Adsorption of a cationic dye (methylene blue) onto spent activated clay. Journal of Hazardous Materials, 144, 355–362.

    Article  CAS  Google Scholar 

  • Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22, 161–187.

    Article  CAS  Google Scholar 

  • Wong, Y. C., Szeto, Y. S., Cheung, W. H., & McKay, G. (2004). Adsorption of acid dyes on chitosan- equilibrium isotherm analyses. Process Biochemistry, 39, 695–704.

    Article  CAS  Google Scholar 

  • Woolard, C. D., Strong, J., & Erasmus, C. R. (2002). Evaluation of the use of modified coal ash as a potential sorbent for organic waste streams. Applied Geochemistry, 17, 1159–1164.

    Article  CAS  Google Scholar 

  • Wu, F., Tseng, R., & Juang, R. (1999). Pore structure and adsorption performance of the activated carbons prepared from plum kernels. Journal of Hazardous Materials, 69, 287–302.

    Article  CAS  Google Scholar 

  • Wu, F., Tseng, R., & Juang, R. (2000). Comparative adsorption of metal and dye on flake- and bead- types of chitosans prepared from fishery wastes. Journal of Hazardous Materials, 73, 63–75.

    Article  CAS  Google Scholar 

  • Wu, F., Tseng, R., & Juang, R. (2001a). Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobilization. Journal of Hazardous Materials, B81, 167–177.

    Article  Google Scholar 

  • Wu, F., Tseng, R., & Juang, R. (2001b). Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Research, 35, 613–618.

    Article  CAS  Google Scholar 

  • Youssef, B. M. (1993). Adsorption of acid dyes by cellulose derivatives. American Dyestuff Reporter, 82, 30–33.

    CAS  Google Scholar 

  • Zhao, M., & Liu, P. (2008). Adsorption behavior of methylene blue on halloysite nanotubes. Microporous and Mesoporous Materials, 112, 419–424.

    Article  CAS  Google Scholar 

  • Zhi-yuan, Y. (2008). Kinetics and Mechanism of the adsorption of methylene blue onto ACFs. Journal of China University of Mining and Technology, 18, 0437–0440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, P., Kaur, H., Sharma, M. et al. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environ Monit Assess 183, 151–195 (2011). https://doi.org/10.1007/s10661-011-1914-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1914-0

Keywords

Navigation