We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Accessibility of hydroxyl groups in birch kraft pulps quantified by deuterium exchange in D2O vapor

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Deuterium exchange in a deuterium oxide (D2O) atmosphere (95 % relative humidity), quantified by a dynamic vapor sorption (DVS) apparatus, was applied for assessing the accessibility of hydroxyl groups in birch kraft pulps. Achieving the maximum deuteration level exhibited slower kinetics than was earlier reported for experiments with ground wood and bacterial cellulose. The deuterium exchange process followed two parallel phenomena. Applying multiple drying and rewetting cycles gave kinetic information also on the hornification phenomenon occurring during these cycles. Dry birch pulps treated with sodium hydroxide solution of varying alkalinities at elevated temperatures were assessed for their accessible hydroxyl groups by DVS with deuterium exchange. This method was evaluated against deuteration combined with Fourier transform infra-red spectroscopy and water retention value (WRV). DVS measurements were in correlation with WRV and both the methods indicated that an alkaline treatment of dry birch pulp improves cellulose accessibility. The level of irreversible deuteration also decreased as the alkalinity was increased. DVS was shown to provide quantitative information on the accessibility but to be a time-consuming method for the pulp samples. A potential means to decrease the duration of the measurement is increased D2O exposure by excluding the drying phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berthold J, Salmén L (1997) Inverse size exclusion chromatography (ISEC) for determining the relative pore size distribution of wood pulps. Holzforschung 51:361–368

    Article  CAS  Google Scholar 

  • Billosta V, Brändström J, Cochaux A, Joseleau J-P, Ruel K (2006) Ultrastructural organization of the wood cell wall can explain modifications caused in fibers during the pulping process. Cell Chem Technol 40:223–229

    CAS  Google Scholar 

  • Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J Mater Sci 38:119–126

    Article  Google Scholar 

  • Fahlén J, Salmén L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438

    Article  Google Scholar 

  • Fernandes Diniz JMB, Gil MH, Castro JAAM (2004) Hornification—its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494

    Article  CAS  Google Scholar 

  • Frilette VJ, Hanle J, Mark H (1948) Rate of exchange of cellulose with heavy water. J Am Chem Soc 70:1107–1113

    Article  CAS  Google Scholar 

  • Gane PAC, Ridgway CJ, Lehtinen E, Valiullin R, Furó I, Schoelkopf J, Paulapuro H, Daicic J (2004) Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures. Ind Eng Chem Res 43:7920–7927

    Article  CAS  Google Scholar 

  • Higgins HG, McKenzie AW (1963) The structure and properties of paper XIV. Effects of drying on cellulose fibres and the problem of maintaining pulp strength. Appita 16:145–164

    CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514

    Article  CAS  Google Scholar 

  • Hill CAS, Ramsay J, Keating B, Laine K, Rautkari L, Hughes M, Constant B (2012) The water vapour sorption properties of thermally modified and densified wood. J Mater Sci 47:3191–3197

    Article  CAS  Google Scholar 

  • Hishikawa Y, Togawa E, Kataoka Y, Kondo T (1999) Characterization of amorphous domains in cellulosic materials using a FTIR deuteration monitoring analysis. Polymer 40:7117–7124

    Article  CAS  Google Scholar 

  • Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose—the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose 13:131–145

    Article  CAS  Google Scholar 

  • Howard RC (1990) The effects of recycling on paper quality. J Pulp Pap Sci 16:J143–J149

    CAS  Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Jayme G (1944) Micromeasurements of the swelling of pulps. Papierfabr Wochenbl Papierfabr 6:187–194

    Google Scholar 

  • Jayme G (1958) Properties of wood celluloses. II. Determination and significance of water-retention value. Tappi 41:180A–183A

    CAS  Google Scholar 

  • Jeffries R (1963) An infra-red study of the deuteration of cellulose and cellulose derivatives. Polymer 4:375–389

    Article  CAS  Google Scholar 

  • Kachrimanis K, Noisternig MF, Griesser UJ, Malamataris S (2006) Dynamic moisture sorption and desorption of standard and silicified microcrystalline cellulose. Eur J Pharm Biopharm 64:307–315

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze U, Heinze W (1998) Comprehensive cellulose chemistry. Vol. 1. Fundamentals and analytical methods, vol 1. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Kljun A, Benians TAS, Goubet F, Meulewaeter F, Knox JP, Blackburn RS (2011) Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromolecules 12:4121–4126

    Article  CAS  Google Scholar 

  • Klungness JH (1974) Recycled fiber properties as affected by contaminants and removal processes. Tappi 57:71–75

    Google Scholar 

  • Kohler R, Dück R, Ausberger B, Alex R (2003) A numeric model for the kinetics of water vapor sorption on cellulosic fibers. Compos Interfaces 10:255–276

    Article  CAS  Google Scholar 

  • Laivins GV, Scallan AM (1993) The mechanism of hornification of wood pulps. Products of papermaking, transactions of the Xth fundamental research symposium, Oxford, 1235–1260

  • Lee JM, Heitmann JA, Pawlak JJ (2007) Technique for the measurement of dimensional changes of natural microfibril materials under variable humidity environments. Mater Sci Eng A 445–446:632–640

    Article  Google Scholar 

  • Lee K-Y, Quero F, Blaker JJ, Hill CAS, Eichhorn SJ, Bismarck A (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605

    Article  CAS  Google Scholar 

  • Lindström T (1992) Chemical factors affecting the behaviour of fibres during papermaking. Nord Pulp Pap Res J 4:181–192

    Article  Google Scholar 

  • Lindström T, Carlsson G (1982) The effect of carboxyl groups and their ionic form during drying on the hornification of cellulose fibers. Sven Papperstidn 85:R146–R151

    Google Scholar 

  • Maloney TC, Paulapuro H (2000) The effect of drying conditions on the swelling and bonding properties of bleached kraft hardwood pulp. Appita Annu Conf Proc 1:41–46

    Google Scholar 

  • Maloney TC, Paulapuro H, Stenius P (1998) Hydration and swelling of pulp fibers measured with differential scanning calorimetry. Nord Pulp Pap Res J 13:31–36

    Article  CAS  Google Scholar 

  • Maloney TC, Laine JE, Paulapuro H (1999) Comments on the measurement of cell wall water. Tappi J 82:125–127

    CAS  Google Scholar 

  • Mann J, Marrinan HJ (1956) The reaction between cellulose and heavy water. Part 1. Qualitative study by infra-red spectroscopy. Trans Faraday Soc 52:481–487

    Article  CAS  Google Scholar 

  • McKenzie AW, Higgins HG (1958) The structure and properties of paper. Part II. The influence of alkali on the infra-red spectra, bonding capacity and beating response of wood and cotton fibres. Sven Papperstidn 61:893–901

    CAS  Google Scholar 

  • Mercer J (1851) Improvement in chemical processes for fulling vegetable and other textures. US Patent 8303

  • Minor JL (1994) Hornification—its origin and meaning. Progr Pap Recycl 3:93–95

    Google Scholar 

  • Morrison JL (1960) Deuterium–hydrogen exchange between water and macromolecules: accessibility of cellulose. Nature 185:160–161

    Article  CAS  Google Scholar 

  • Nazhad M, Paszner L (1994) Fundamentals of strength loss in recycled paper. Tappi J 77:171–179

    CAS  Google Scholar 

  • Nishiyama Y, Kuga S, Okamo T (2000) Mechanism of mercerization revealed by X-ray diffraction. J Wood Sci 46:452–457

    Article  CAS  Google Scholar 

  • Oksanen T, Buchert J, Viikari L (1997) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51:355–360

    Article  CAS  Google Scholar 

  • Okubayashi S, Griesser UJ, Bechtold T (2004) A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym 58:293–299

    Article  CAS  Google Scholar 

  • Okubayashi S, Griesser UJ, Bechtold T (2005) Moisture sorption/desorption behavior of various manmade cellulosic fibers. J Appl Polym Sci 97:1621–1625

    Article  CAS  Google Scholar 

  • Östlund Å, Köhnke T, Nordstierna L, Nydén M (2010) NMR cryoporometry to study the fiber wall structure and the effect of drying. Cellulose 17:321–328

    Article  Google Scholar 

  • Park S, Venditti RA, Jameel H, Pawlak JJ (2006) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66:97–103

    Article  CAS  Google Scholar 

  • Philipp B, Lehmann R, Ruscher C (1959) Zum Einfluß des Cellulosematerials auf den Verlauf der Alkalicellulosebildung. Faserforschung und Textiltechnik 10:22–35

    CAS  Google Scholar 

  • Pönni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. BioResources 7:6077–6108

    Google Scholar 

  • Pönni R, Kontturi E, Vuorinen T (2013) Accessibility of cellulose: structural changes and their reversibility in aqueous media. Carbohydr Polym 93:424–429

    Article  Google Scholar 

  • Pönni R, Galvis L, Vuorinen T (2014) Changes in accessibility of cellulose during kraft pulping of wood in deuterium oxide. Carbohydr Polym 101:792–797

    Article  Google Scholar 

  • Rautkari L, Hill CAS, Curling S, Jalaludin Z, Ormondroyd G (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J Mater Sci 48:6352–6356

    Article  CAS  Google Scholar 

  • Saito G (1939) Das Verhalten der Zellulose in Alkalilösungen. Kolloid-Beih 49:365–454

    CAS  Google Scholar 

  • Scallan AM (1974) The structure of the cell wall of wood—a consequence of anisotropic inter-microfibrillar bonding? Wood Sci 6:266–271

    Google Scholar 

  • Sepall O, Mason SG (1961) Hydrogen exchange between cellulose and water II. Interconversion of accessible and inaccessible regions. Can J Chem 39:1944–1955

    Article  CAS  Google Scholar 

  • Sharratt V, Hill CAS, Jalaludin Z, Kint DPR (2011) The influence of photodegradation and weathering on the water vapour sorption kinetic behavior of scots pine earlywood and latewood. Polym Degrad Stab 96:1210–1218

    Article  CAS  Google Scholar 

  • Siroká B, Manian AP, Noisternig MF, Henniges U, Kostic M, Potthast A, Griesser UJ, Bechtold T (2012) Wash-dry cycle induced changes in low-ordered parts of regenerated cellulosic fibers. J Appl Polym Sci 126:E396–E407

    Article  Google Scholar 

  • Sjöström E, Enström B (1967) Characterization of acidic polysaccharides isolated from different pulps. Tappi 50:32–36

    Google Scholar 

  • Stone JE, Scallan AM (1967) The effect of component removal upon the porous structure of the cell wall of wood. II. Swelling in water and the fiber saturation point. Tappi 50:496–501

    Google Scholar 

  • Stone JE, Scallan AM (1968) A structural model for the cell wall of water-swollen wood pulp fibres based on their accessibility to macromolecules. Cell Chem Technol 2:343–358

    CAS  Google Scholar 

  • Suchy M, Kontturi E, Vuorinen T (2010a) Impact of drying on wood ultrastructure: similarities in cell wall alteration between native wood and isolated wood-based fibers. Biomacromolecules 11:2161–2168

    Article  CAS  Google Scholar 

  • Suchy M, Virtanen J, Kontturi E, Vuorinen T (2010b) Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy. Biomacromolecules 11:515–520

    Article  CAS  Google Scholar 

  • Taniguchi T, Harada H, Nakato K (1978) Determination of water adsorption sites in wood by a hydrogen–deuterium exchange. Nature 272:230–231

    Article  CAS  Google Scholar 

  • Tsuchikawa S, Siesler HW (2003a) Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: softwood. Appl Spectrosc 57:667–674

    Article  CAS  Google Scholar 

  • Tsuchikawa S, Siesler HW (2003b) Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: Hardwood. Appl Spectrosc 57:675–6681

    Article  CAS  Google Scholar 

  • Wang X, Maloney TC, Paulapuro H (2003) Internal fibrillation in never-dried and once-dried chemical pulps. Appita J 56:455–459

    CAS  Google Scholar 

  • Weise U (1998) Hornification—mechanisms and terminology. Pap Puu 80:110–115

    Google Scholar 

  • Weise U, Hiltunen E, Paulapuro H (1998) Verhornung von Zellstoff und Maßnahmen zu ihrer Reversion. Das Papier 52:V14–V19

    CAS  Google Scholar 

  • Wistara N, Young RA (1999) Properties and treatments of pulps from recycled paper. Part I. Physical and chemical properties of pulps. Cellulose 6:291–324

    Article  CAS  Google Scholar 

  • Xie Y, Hill CAS, Jalaludin Z, Curling SF, Anandjiwala RD, Norton AJ, Newman G (2011) The dynamic water vapour sorption behavior of natural fibres and kinetic analysis using the parallel exponential kinetics model. J Mater Sci 46:479–489

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Academy of Finland and UPM are acknowledged. Mrs. Mirja Reinikainen is gratefully acknowledged for her help in experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raili Pönni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pönni, R., Rautkari, L., Hill, C.A.S. et al. Accessibility of hydroxyl groups in birch kraft pulps quantified by deuterium exchange in D2O vapor. Cellulose 21, 1217–1226 (2014). https://doi.org/10.1007/s10570-014-0166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0166-x

Keywords

Navigation