Skip to main content
Log in

Moisture uptake in native cellulose – the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This paper aims at a better understanding of the interaction between cellulose and moisture. In particular, the role of different hydrogen bonds in moisture uptake is investigated. Dynamic Fourier transform infrared spectroscopy (FT-IR) has been used in combination with deuterium exchange, which permits the labelling of cellulose domains with different accessibilities.

The static spectra indicate a marked exchange of deuterium for the O2–H⋯O6 bonds, but only a limited exchange for the O3–H⋯O5 bonds. In the dynamic FT-IR spectra, deuteration gives rise to the growth of a broad band at wavenumbers around 2500 cm−1. The rather unstructured appearance of the band suggests that deuteration is occurring only on the surface of the cellulose crystallites, i.e. in more or less non-load-carrying parts. This is corroborated by the lack of split peaks related to OD bonds in this band. In agreement with these observations, the split peak related to O3–H⋯O5 bonds and assigned to the load carrying cellulose structure increases during both H2O and D2O moisture conditioning, indicating a shift of the load transfer towards the backbone of the cellulose structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åkerholm M. 2003. Ultrastructural aspects of pulp fibers as studied by dynamic FT-IR spectroscopy. Ph.D. Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden

  • Åkerholm M. and Salmén L. 2001. Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42: 963–969

    Article  Google Scholar 

  • Atalla R.H. 1999. Celluloses. Carbohydrates and their derivatives including tannins, cellulose, and related lignin. In: Pinto B.M. (ed.), Carbohydrates and Their Derivatives Including Tannins, Cellulose, and Related Lignins, Vol. 3. Elsevier, Amsterdam, pp. 529–598

  • Bellamy L.J. and Rogasch P.E. 1960. Proton transfer in hydrogen bonded systems. Proc. Roy. Soc. Lond. A257: 98–108

    CAS  Google Scholar 

  • Fengel D. and Ludwig M. 1991. Möglichkeiten und Grenzen der FTIR-Spektroskopie bei der Charakterisierung von Cellulose [Possibilities and limits for use of FTIR-spectroscopy for the characterization of cellulose]. Das Papier 45(2): 45–51 (in German)

    CAS  Google Scholar 

  • Fengel D. and Wegener G. 1989. Wood. Chemistry, Ultrastructure, Reactions. Verlag Walter de Gruyter, Berlin, New York

    Google Scholar 

  • Frilette V.J., Hanle J. and Mark H. 1948. Rate of exchange of cellulose with heavy water. J. Am. Chem. Soc. 70: 1107–1113

    Article  CAS  Google Scholar 

  • Hinterstoisser B. and Salmén L. 1999. Two-dimensional step-scan FTIR: a tool to unravel the OH-valency-range of the spectrum of Cellulose I. Cellulose 6: 251–263

    Article  CAS  Google Scholar 

  • Hinterstoisser B. and Salmén L. 2000. Application of dynamic 2D FTIR to cellulose. Vibration. Spectrosc. 22: 111–118

    Article  CAS  Google Scholar 

  • Hinterstoisser B., Åkerholm M. and Salmén L. 2001. Effect of fiber orientation in dynamic FTIR study on native cellulose. Carbohydr. Res. 334: 27–37

    Article  CAS  Google Scholar 

  • Hishikawa Y., Togawa E., Kataoka Y. and Kondo T. 1999. Characterization of amorphous domains in cellulosic materials using a FTIR deuteration monitoring analysis. Polymer 40: 7117–7124

    Article  CAS  Google Scholar 

  • Jeffries J. 1963. An infra-red study of the deuteration of cellulose and cellulose derivatives. Polymer 4: 375–389

    Article  CAS  Google Scholar 

  • Jeffries J. 1964. The amorphous fraction of cellulose and its relation to moisture sorption. J. Polym. Sci. 8: 1213–1220

    CAS  Google Scholar 

  • Jarvis M.C. and McCann M.C. 2000. Macromolecular biophysics of the plant cell wall: concepts and methodology. Plant Physiol. Biochem. 38(1/2): 1–13

    Article  CAS  Google Scholar 

  • Kondo T. 1997. The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4: 281–292

    Article  CAS  Google Scholar 

  • Liang C.Y. and Marchessault R.H. 1959a. Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J. Polym. Sci. 37: 385–395

    Article  CAS  Google Scholar 

  • Liang C.Y. and Marchessault R.H. 1959b. Infrared spectra of crystalline polysaccharides. II. Native cellulose in region from 640 to 1700 cm−1. J. Polym. Sci. 39: 269–278

    Article  CAS  Google Scholar 

  • Mann J. and Marrinan H.J. 1956. The reaction between cellulose and heavy water (Parts I–III). Trans. Faraday Soc. 52: 481–497

    Article  CAS  Google Scholar 

  • Marrinan H.J. and Mann J. 1954. A study by infra-red spectroscopy of hydrogen bonding in cellulose. J. Appl. Chem. 4: 204–211

    Article  CAS  Google Scholar 

  • Nishiyama A., Isogai T., Okano M., Müller M. and Chanzy H. 1999. Intracrystalline deuteration of native cellulose. Macromolecules 32: 2078–2081

    Article  CAS  Google Scholar 

  • Nishiyama Y., Langan P. and Chanzy H. 2002. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124: 9074–9082

    Article  CAS  Google Scholar 

  • Olsson A.-M. and Salmén L. 2004. The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr. Res. 3394: 813–818

    Article  CAS  Google Scholar 

  • O’Sullivan A.C. 1997. Cellulose: the structure slowly unravels. Cellulose 4: 173–207

    Article  CAS  Google Scholar 

  • Pennings A.J., Prins W., Hale R.D. and Ranby B.G. 1961. Inter- and intramolecular order in regenerated cellulose. J. Appl. Polym. Sci. 5(18): 676–684

    Article  CAS  Google Scholar 

  • Pérez S. and Mazeau K. 2005. Conformations, structures, and morphologies of celluloses. In: Dumitrui S. (ed.), Polysaccharides: Structural Diversity and Functional Versatility, 2nd ed. Marcel Dekker Inc., New York, pp. 41–68

    Google Scholar 

  • Plummer C.J.G., Pittet V. and Navi P. 2001. The mechano-sorptive effect in wood: molecular dynamics simulations. In: Proceedings of the 1st Conference of the European Society of Wood Mechanics 2001, pp. 103–111

  • Rowland S.O. and Roberts E.J. 1972. The nature of accessible surfaces in the microstructure of native cellulose. J. Polym. Sci. Part A 10: 2447–2461

    Article  CAS  Google Scholar 

  • Settle F.A. 1997. Handbook of Instrumental Techniques for Analytical Chemistry. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Siesler H., Krässig H., Grass F., Kratzl K. and Derkosch J. 1975. Strukturuntersuchungen an Cellulosefasern verschiedenen Verstreckungsgrades mittels IR-Reflexionsspektros- kopie und Deuteriumaustausch [Structural investigation of cellulosic fibers with different degrees of drawing by means of infrared spectroscopy and deuterium exchange]. Die Angewandte Markomolekulare Chemie 42: 139–165 (in German)

    Article  CAS  Google Scholar 

  • Tashiro K. and Kobayashi M. 1991. Theoretical evaluation of three-dimensional elastic constants of native and regenerated cellulose: role of hydrogen bonds. Polymer 32(8): 1516–1526

    Article  CAS  Google Scholar 

  • Tsuchikawa S. and Siesler H.W. 2003a. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I. Softwood. Appl. Spectrosc. 57(6): 667–674

    Article  CAS  Google Scholar 

  • Tsuchikawa S. and Siesler H.W. 2003b. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II. Hardwood. Appl. Spectrosc. 57(6): 675–681

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The FT-IR measurements were performed during a “Short Term Scientific Mission” of the first author to STFI-Packforsk, Stockholm, Sweden. The financial support of the European Science Foundation in the framework of COST action E35 is gratefully acknowledged. The authors would also like to thank Margaretha Åkerholm for valuable assistance with the FTIR-measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Hofstetter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofstetter, K., Hinterstoisser, B. & Salmén, L. Moisture uptake in native cellulose – the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose 13, 131–145 (2006). https://doi.org/10.1007/s10570-006-9055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-006-9055-2

Key words

Navigation