Skip to main content
Log in

Facile preparation of mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: physical, viscoelastic and mechanical properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanoparticle (CNP) reinforced polyvinyl alcohol-borax (PB) hydrogels were prepared through a facile approach in an aqueous medium. The effects of particle size, aspect ratio, crystal structure, and crystallinity of CNPs on the density, water content, optical transmittance and compression property of the hydrogels were investigated. The obtained stiff, high-water-capacity (~96 %), low-density (~1.1 g/cm3), translucent hydrogels exhibited birefringence behavior. The compression and dynamic oscillation measurements confirmed the incorporation of well-dispersed CNPs to PB system significantly enhanced the compressive strength and viscoelasticity of the hydrogels. The compression stress of cellulose I nanofiber reinforced PB hydrogel was 21-fold higher compared to the neat PB hydrogel. Highly-crystalline CNPs not only tangled with polyvinyl alcohol chains though numerous hydrogen bonds, but formed chemically crosslinked complexes with borate ions as well, thus acting as multifunctional crosslinking agents and nanofillers to physically and chemically bridge the 3D network of the hydrogels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7:2373–2379

    Article  CAS  Google Scholar 

  • Appel EA, Loh XJ, Jones ST, Biedermann F, Dreiss CA, Scherman OA (2012) Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. J Am Chem Soc 134:11767–11773

    Article  CAS  Google Scholar 

  • Asher SA, Kimble KW, Walker JP (2008) Enabling thermoreversible physically cross-linked polymerized colloidal array photonic crystals. Chem Mater 20:7501–7509

    Article  CAS  Google Scholar 

  • Boluk Y, Zhao LY, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28:6114–6123

    Article  CAS  Google Scholar 

  • Carretti E, Natali I, Matarrese C, Bracco P, Weiss RG, Baglioni P, Salvini A, Dei L (2010) A new family of high viscosity polymeric dispersions for cleaning easel paintings. J Cult Herit 11:373–380

    Article  Google Scholar 

  • Cervin NT, Andersson L, Ng JBS, Olin P, Bergstrom L, Wagberg L (2013) Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules 14:503–511

    Article  CAS  Google Scholar 

  • Chang CY, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Physic 209:1266–1273

    Article  CAS  Google Scholar 

  • Chen CY, Yu T-L (1997) Dynamic light scattering of poly(vinyl alcohol)-borax aqueous solution near overlap concentration. Polymer 38:2019–2025

    Article  CAS  Google Scholar 

  • Das D, Kar T, Das PK (2012) Gel-nanocomposites: materials with promising applications. Soft Matter 8:2348–2365

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Article  CAS  Google Scholar 

  • Gao SJ, Guo JM, Nishinari K (2008) Thermoreversible konjac glucomannan gel crosslinked by borax. Carbohydr Polym 72:315–325

    Article  CAS  Google Scholar 

  • Gawryla MD, van den Berg O, Weder C, Schiraldi DA (2009) Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. J Mater Chem 19:2118–2124

    Article  CAS  Google Scholar 

  • Gouvea MR, Ribeiro C, de Souza CF, Marvila-Oliveira I, Lucyszyn N, Sierakowski MR (2009) Rheological behavior of borate complex and polysaccharides. Mat Sci Eng C-Bio S 29:607–612

    Article  CAS  Google Scholar 

  • Han J, Zhou C, Wu Y, Liu F, Wu Q (2013a) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14:1529–1540

    Article  CAS  Google Scholar 

  • Han JQ, Zhou CJ, French AD, Han GP, Wu QL (2013b) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94:773–781

    Article  CAS  Google Scholar 

  • Inoue T, Osaki K (1993) Rheological properties of poly(vinyl alcohol)/sodium borate aqueous-solutions. Rheol Acta 32:550–555

    Article  CAS  Google Scholar 

  • Kobayashi M, Chang YS, Oka M (2005) A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26:3243–3248

    Article  CAS  Google Scholar 

  • Kohnke T, Lin A, Elder T, Theliander H, Ragauskas AJ (2012) Nanoreinforced xylan-cellulose composite foams by freeze-casting. Green Chem 14:1864–1869

    Article  Google Scholar 

  • Köhnke T, Elder T, Theliander H, Ragauskas AJ (2013) Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydr Polym http://dx.doi.org/10.1016/j.carbpol.2013.03.060

  • Koike A, Nemoto N, Inoue T, Osaki K (1995) Dynamic light-scattering and dynamic viscoelasticity of poly(Vinyl Alcohol) in aqueous borax solutions. 1. Concentration-effect. Macromolecules 28:2339–2344

    Article  CAS  Google Scholar 

  • Lima MMD, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Comm 25:771–787

    Article  Google Scholar 

  • Lin HL, Yu TL, Cheng CH (2000) Reentrant behavior of poly(vinyl alcohol)-borax semidilute aqueous solutions. Colloid Polym Sci 278:187–194

    Article  CAS  Google Scholar 

  • Lin HL, Liu YF, Yu TL, Liu WH, Rwei SP (2005) Light scattering and viscoelasticity study of poly(vinyl alcohol)-borax aqueous solutions and gels. Polymer 46:5541–5549

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae K (1995) Elastic-modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Pol Phys 33:1647–1651

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681

    Article  CAS  Google Scholar 

  • Ramaraj B (2007) Crosslinked poly(vinyl alcohol) and starch composite films. II. Physicomechanical, thermal properties and swelling studies. J Appl Polym Sci 103:909–916

    Article  CAS  Google Scholar 

  • Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128

    Article  CAS  Google Scholar 

  • Shin MK, Spinks GM, Shin SR, Kim SI, Kim SJ (2009) Nanocomposite hydrogel with high toughness for bioactuators. Adv Mater 21:1712–1715

    Google Scholar 

  • Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    Article  CAS  Google Scholar 

  • Vi L, Galaev IY, Plieva FM, Savinal IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451

    Article  Google Scholar 

  • Wang YX, Chen LY (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83:1937–1946

    Article  CAS  Google Scholar 

  • Wu YT, Zhou Z, Fan QQ, Chen L, Zhu MF (2009) Facile in situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical properties. J Mater Chem 19:7340–7346

    Article  CAS  Google Scholar 

  • Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydr Polym 73:401–408

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC, Xie XM (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22:22467–22480

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC (2013a) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals-polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Duan JF, Xu F, Sun RC (2013b) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. Acs Appl Mater Inter 5:3199–3207

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

  • Zhang W, Yang XL, Li CY, Liang M, Lu CH, Deng YL (2011) Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties. Carbohydr Polym 83:257–263

    Article  CAS  Google Scholar 

  • Zhou CJ, Wu QL (2011) A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloid Surf B 84:155–162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support from Louisiana Board of Regents [LEQSF-EPS(2013)-PFUND-318 and (LEQSF(2010-13)-RD-B-01], as well as Chinese Scholarship Council (CSC No.: 2009660015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Lei, T. & Wu, Q. Facile preparation of mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: physical, viscoelastic and mechanical properties. Cellulose 20, 2947–2958 (2013). https://doi.org/10.1007/s10570-013-0082-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0082-5

Keywords

Navigation