Skip to main content
Log in

In situ generated cellulose nanoparticles to enhance the hydrophobicity of paper

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Handsheets with in situ generated cellulose nanoparticles were made from oxidized pulp fibers prepared by 2,2,6,6-tetramethylpiperidinyl-1-oxyl-mediated oxidation of kraft fiber with sodium hypochlorite and sodium bromide. The oxidized pulp fibers were blended prior to handsheet formation for short times (1–3 min). From gravimetric analysis of the supernatant, yield of cellulose nanoparticles generated from this blending process were up to 9.5 dry wt%. Scanning electron microscopy showed that the handsheets fabricated in a wetlay process had increased smoothness with increased blending time. A significant decrease in water vapor transmission rate for the sheets supported the hypothesis that cellulose nanoparticles fill the empty spaces between pulp fibers throughout the handsheet affording a more dense structure. Oxidation significantly enhanced the tensile index of the handsheets and this value was further improved by blending for 2 min. The handsheets were treated with a solution of octadecylamine (ODA) modifying the surface chemistry of the paper. Irreversibly adsorbed ODA on the oxidized cellulose surfaces after extensive extraction was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Sessile drop contact angle tests for modified handsheets illustrated its enhanced hydrophobicity with contact angles over 90°. Overall the study developed a novel route to make paper with enhanced functionality without the need to separately deposit nanocellulose onto the paper surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17(1):21–27

    Article  CAS  Google Scholar 

  • Braun B, Dorgan JR (2008) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10(2):334–341. doi:10.1021/bm8011117

    Article  Google Scholar 

  • DiFlavio J-L, Pelton R, Leduc M, Champ S, Essig M, Frechen T (2007) The role of mild TEMPO–NaBr–NaClO oxidation on the wet adhesion of regenerated cellulose membranes with polyvinylamine. Cellulose 14(3):257–268. doi:10.1007/s10570-006-9104-x

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi:10.1007/S10853-009-3874-0

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65

    Article  Google Scholar 

  • Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23(3):299–304

    Article  CAS  Google Scholar 

  • Fujisawa S, Saito T, Isogai A (2012) Nano-dispersion of TEMPO-oxidized cellulose/aliphatic amine salts in isopropyl alcohol. Cellulose 19(2):459–466

    Article  CAS  Google Scholar 

  • Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Surface Engineering of Ultrafine Cellulose Nanofibrils toward Polymer Nanocomposite Materials. Biomacromolecules 14(5):1541–1546. doi:10.1021/bm400178m

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479

    Article  CAS  Google Scholar 

  • Hu Y, Topolkaraev V, Hiltner A, Baer E (2001) Measurement of water vapor transmission rate in highly permeable films. J Appl Polym Sci 81(7):1624–1633. doi:10.1002/app.1593

    Article  CAS  Google Scholar 

  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. doi:10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  • I’Anson SJ, Savani S, Sampson WW (2008) Density dependent influence of grammage on tensile properties of handsheets. J Pulp Pap 34(3):182–189

    Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater 81 (6):1109–1112. doi:10.1007/S00339-005-3316-Z

    Google Scholar 

  • Jiang F, Han S, Hsieh Y-L (2013) Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Adv 3:12366–12375

    Article  CAS  Google Scholar 

  • Johansson L-S, Tammelin T, Campbell JM, Setala H, Osterberg M (2011) Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose. Soft Matter 7(22):10917–10924. doi:10.1039/C1SM06073B

    Article  CAS  Google Scholar 

  • Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16(2):227–238. doi:10.1007/S10570-008-9269-6

    Article  CAS  Google Scholar 

  • Johnson RK, Zink-Sharp A, Glasser WG (2011) Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose 18(6):1599–1609

    Article  CAS  Google Scholar 

  • Katz SBR, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Svensk Papperstid 87(6):6

    Google Scholar 

  • Li Q, Renneckar S (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose 16(6):1025–1032

    Article  Google Scholar 

  • Li Z, Renneckar S, Barone JR (2010) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17(1):57–68

    Article  Google Scholar 

  • Li Q, McGinnis S, Sydnor C, Wong A, Renneckar S (2013) Nanocellulose life cycle assessment. ACS Sustain Chem Eng 1(18):919–928

    Article  CAS  Google Scholar 

  • Montibon E, Lestelius M, Jarnstrom L, Love KT (2010) Electroconductive paper—a study of polymer deposition and conductivity influenced by sheet forming and fibre beating. Nord Pulp Pap Res J 25(4):473–480

    Article  CAS  Google Scholar 

  • Moran JI, Alvarez VA, Cyras VP, Vazquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159. doi:10.1007/S10570-007-9145-9

    Article  CAS  Google Scholar 

  • Morseburg K, Chinga-Carrasco G (2009) Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets. Cellulose 16(5):795–806. doi:10.1007/S10570-009-9290-4

    Article  Google Scholar 

  • Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloid Surf A 289(1–3):219–225. doi:10.1016/J.Colsurfa.2006.04.038

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691. doi:10.1021/Bm060154s

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. doi:10.1021/Bm0703970

    Article  CAS  Google Scholar 

  • Salajkova M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805. doi:10.1039/C2JM34355J

    Article  CAS  Google Scholar 

  • Samyn P (2013) Wetting and hydrophobic modification of cellulose surfaces for paper applications. J Mater Sci 48(19):6455–6498. doi:10.1007/s10853-013-7519-y

    Article  CAS  Google Scholar 

  • Saxena A, Ragauskas AJ (2009) Water transmission barrier properties of biodegradable films based on cellulosic whiskers and xylan. Carbohydr Polym 78(2):357–360. doi:10.1016/J.Carbpol.2009.03.039

    Article  CAS  Google Scholar 

  • Saxena A, Elder TJ, Ragauskas AJ (2011) Moisture barrier properties of xylan composite films. Carbohydr Polym 84(4):1371–1377. doi:10.1016/J.Carbpol.2011.01.039

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85. doi:10.1007/S10570-008-9244-2

    Article  CAS  Google Scholar 

  • Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanopart Res 13(2):773–782. doi:10.1007/s11051-010-0077-1

    Article  CAS  Google Scholar 

  • Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47(3):291–294. doi:10.1002/(Sici)1097-0126(199811)47:3<291:Aid-Pi11>3.0.Co;2-1

    Article  CAS  Google Scholar 

  • TAPPI TEST METHODS (1996). Tappi test methods. Tappi Press, Atlanta

  • Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12(2):348–353. doi:10.1021/Bm101103p

    Article  CAS  Google Scholar 

  • Wu C-N, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13(6):1927–1932. doi:10.1021/bm300465d

    Article  CAS  Google Scholar 

  • Zhao HP, Feng XQ, Gao HJ (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90(7). doi:10.1063/1.2450666

Download references

Acknowledgments

Financial support for this work was provided by the United States Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) grant 2010-65504-20429 and USDA NIFA 2010-34489-20784 that funds the Biobased Sustainable Materials as Resources for Tomorrow (BSMART) program and the Sustainable Engineered Materials Institute (SEMI), respectfully. Additional support was provided by Virginia Tech’s Interdisciplinary Graduate Education Program for Sustainable Nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Renneckar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Johnson, R.K., Lin, Z. et al. In situ generated cellulose nanoparticles to enhance the hydrophobicity of paper. Cellulose 20, 2935–2945 (2013). https://doi.org/10.1007/s10570-013-0062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0062-9

Keywords

Navigation