Skip to main content
Log in

Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We have performed molecular dynamics calculations using a revised version of the Gromos56Acarbo force field to understand the consequences of the different potential hydrogen bonding patterns on the structural stability and thermal behavior of the Iα and Iβ forms of native cellulose. For each allomorph, we considered three patterns of hydrogen bonds: two patterns obtained from neutron diffraction data refinement and a regular mixture of the two. Upon annealing, the hydrogen bonding schemes of cellulose Iβ, irrespective of the starting structure, re-arranged into the main hydrogen bond pattern experimentally observed (pattern A). On the other hand, the Iα structures, irrespective of the starting hydrogen bonding pattern, converged to a non-experimental structure where the adjacent chains are shifted along the chain direction by 0.12 nm in the hydrogen-bonded plane, and the hydroxymethyl group conformation alternates between gt and tg along the chain. The exotic structure in Iα might be a consequence of a deficiency in force field parameters and/or potential molecular arrangement in less crystalline cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal V, Huber GW, Conner WC Jr, Auerbach SM (2011) Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures. J Chem Phys 135:134506.1–134506.13

    Article  CAS  Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145

    Article  CAS  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101–014107

    Article  CAS  Google Scholar 

  • Chen P, Nishiyama Y, Mazeau K (2012) Torsional entropy at the origin of the reversible temperature-induced phase transition of cellulose. Macromolecules 45:362–368

    Article  CAS  Google Scholar 

  • Chen P, Nishiyama Y, Mazeau K (in preparation) Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphs

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203

    Google Scholar 

  • Hansen HS, Hünenberger PH (2011) A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32:998–1032

    Article  CAS  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Hidaka H, Kim U-J, Wada M (2010) Synchrotron X-ray fiber diffraction study on the thermal expansion behavior of cellulose crystals in tension wood of Japanese poplar in the low-temperature region. Holzforschung 64:167–171

    Article  CAS  Google Scholar 

  • Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484

    Article  CAS  Google Scholar 

  • Horii F, Hirai A, Kitamaru R (1983) Solid-state carbon-13 NMR study of conformations of oligosaccharides and cellulose. Conformation of CH2OH group about the exo-cyclic carbon–carbon bond. Polym Bull 10:357–361

    Article  CAS  Google Scholar 

  • Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692

    Article  CAS  Google Scholar 

  • Matthews JF, Beckham GT, Bergenstråhle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8:735–748

    Article  CAS  Google Scholar 

  • Mazeau K (2005) Structural micro-heterogeneities of crystalline Iβ-cellulose. Cellulose 12:339–349

    Article  CAS  Google Scholar 

  • Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140

    Article  CAS  Google Scholar 

  • Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci Part B Polym Phys 40:1095–1102

    Article  CAS  Google Scholar 

  • Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose Iα to Iβ. Polym J (Tokyo, Jpn) 35:155–159

    Article  CAS  Google Scholar 

  • Wada M, Hori R, Kim U-J, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose Iβ and its high-temperature phase. Polym Degrad Stab 95:1330–1334

    Article  CAS  Google Scholar 

  • Watanabe A, Morita S, Ozaki Y (2006) Study on temperature-dependent changes in hydrogen bonds in cellulose Iβ by infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation spectroscopy. Biomacromolecules 7:3164–3170

    Article  CAS  Google Scholar 

  • Watanabe A, Morita S, Ozaki Y (2007) Temperature-dependent changes in hydrogen bonds in cellulose Iα studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Iβ. Biomacromolecules 8:2969–2975

    Article  CAS  Google Scholar 

  • Zhang Q, Bulone V, Ågren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18:207–221

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Nishiyama.

Additional information

The Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS) is affiliated with Université Joseph Fourier and a member of the Institut de Chimie Moléculaire de Grenoble and Institut Carnot PolyNat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 960 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Nishiyama, Y., Putaux, JL. et al. Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation. Cellulose 21, 897–908 (2014). https://doi.org/10.1007/s10570-013-0053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0053-x

Keywords

Navigation