Skip to main content
Log in

Electron (charge) density studies of cellulose models

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Introductory material first describes electron density approaches and demonstrates visualization of electron lone pairs and bonding as concentrations of electron density. Then it focuses on the application of Bader’s Quantum Theory of Atoms-in-Molecules (AIM) to cellulose models. The purpose of the work is to identify the various interactions that stabilize cellulose structure. AIM analysis aids study of non-covalent interactions, especially those for which geometric criteria are not well established. The models were in the form of pairs of cellotriose molecules, methylated at the O1 and O4 ends. Based on the unit cell of cellulose Iβ, there were corner–corner, and center–center pairs that correspond to (200) sheets, and corner–center pairings that corresponded to (1–10) and (110) stacks. AIM analysis (or charge-density topology analysis) was applied before and after minimization in vacuum and in continuum solvation. Besides the conventional O–H···O hydrogen bonds, all of which were known from geometric criteria, C–H···O hydrogen bonds (some previously reported), and some O···O and H···H interactions were found. Non-covalent bonds in the (200) sheets were maintained in all calculations with the exception of a weak, bifurcated O6–H···O2′′ bond that was not found in the corner–corner pair model and did not survive minimization. Nor did the O6···O4 interactions on the reducing ends of the triosides. Pairs of molecules along the (110) plane had an equal number (12) of non-covalent bonds compared to the pairs along the (1–10) plane, but the AIM parameters indicated the bonds between the pairs in the (110) plane were weaker. Intra-molecular O–H···O hydrogen bonds survived in these minimized pairs, but the relative chain alignments usually did not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bader RFW (1990) Atoms in Molecules: a Quantum Theory, 1st edn. Clarendon Press, Oxford

    Google Scholar 

  • Barnett CB, Naidoo KJ (2008) Stereoelectronic and solvation effects determine hydroxymethyl conformational preferences in monosaccharides. J Phys Chem B 112:15450–15459

    Article  CAS  Google Scholar 

  • Chen JY-J, Naidoo KJ (2003) Evaluating intramolecular hydrogen bond strengths in (1 − 4) linked disaccharides from electron density relationships. J Phys Chem B 107:9558–9566

    Article  CAS  Google Scholar 

  • Espinosa E, Molins E, Lecomte C (1998) Experimental electron density overlapping in hydrogen bonds: topology vs. energetics. Chem Phys Lett 285:170–173

    Google Scholar 

  • Fernández-Alonso MC, Javier Cañada FJ, Jiménez-Barbero J, Cuevas G (2005) Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate − aromatic interactions. J Am Chem Soc 127:7379–7386. doi:10.1021/ja051020+

    Article  CAS  Google Scholar 

  • French AD, Johnson GP (2004) What crystals of small analogs are trying to tell us about cellulose structure. Cellulose 11:5–22

    Article  CAS  Google Scholar 

  • French AD, Johnson GP (2009) Cellulose and the twofold screw axis: modeling and experimental arguments. Cellulose 16:959–973. doi:10.1007/s10570-009-9347-4

    Article  CAS  Google Scholar 

  • French AD, Johnson GP, Cramer C, Csonka GI (2012) Conformational analysis of cellobiose by electronic structure theories. Carbohydr Res 350:68–76. doi:10.1016/j.carres.2011.12.023

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O¨, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Gaussian, Inc., Wallingford, CT

  • Glasser WG, Atalla RH, Blackwell J, Brown RM Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598. doi:10.1007/s10570-012-9691-7

    Article  CAS  Google Scholar 

  • Grabowski SJ (ed) Hydrogen bonding—New insights. Springer, Dordrecht 2006

  • Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitián E, Peña D, Gourdon A, Meyer G (2012) Bond-order discrimination by atomic force microscopy. Science 337:1326–1329

    Article  CAS  Google Scholar 

  • Hadden JA, French AD, Woods RJ (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers. doi:10.1002/bip.22279

    Google Scholar 

  • Hübschle CB, Luger P (2006) MolIso—a program for colour-mapped iso-surfaces. J Appl Cryst 39:901–904. doi:10.1107/S0021889806041859

    Article  CAS  Google Scholar 

  • Jaradat DMM, Mebs S, Chęińska L, Luger P (2007) Experimental charge density of sucrose at 20 K: bond topological, atomic, and intermolecular quantitative properties. Carbohydr Res 342:1480–1489

    Article  CAS  Google Scholar 

  • Keith TA (2013) AIMAll (version 13.02.26), (http://aim.tkgristmill.com)

  • Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Chem Phys 99:9747–9754

    Article  CAS  Google Scholar 

  • Koritsanszky T, Macchi P, Gatti C, Farrugia LJ, Mallinson PR, Volkov A, Richter T (2006) Computer Program Package for Multipole Refinement, Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental and Theoretical Structure Factors. http://www.chem.gla.ac.uk/~louis/xd-home/

  • Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488. doi:10.1021/la903111j

    Article  CAS  Google Scholar 

  • Longchambon F, Gillier-Pandraud H, Wiest R, Rees B, Mitschler A, Feld R, Lehmann M, Becker P (1985) Etude structurale et densité de déformation electronique X-N à 75 K dans la région anomère du β-dl-arabinose. Acta Crystallogr Sect B 41:47–56

    Article  Google Scholar 

  • Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. doi:10.1021/jp810292n

    Article  CAS  Google Scholar 

  • Matta CF, Boyd R (2007) The Quantum theory of atoms in molecules. JF Wiley, New York p 5

    Book  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152

    Article  CAS  Google Scholar 

  • Matthews JF, Beckham GT, Bergenstråhle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8:735–748

    Article  CAS  Google Scholar 

  • Nishiyama Y, Chanzy H, Langan PJ (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140

    Article  CAS  Google Scholar 

  • Parthasarathi R, Bellesia G, Chundawat SPS, Dale BE, Langan P, Gnanakaran S (2011) Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A 115:14191–14202. doi:10.1021/jp203620x

    Article  CAS  Google Scholar 

  • Patai S (1992) The chemistry of alkanes and cycloalkanes. Wiley, New York, pp 27, 37, 39

  • Schnupf U, Momany FA (2011) Rapidly calculated DFT relaxed iso-potential ϕ/ψ maps: β-cellobiose. Cellulose 18:859–887

    Article  CAS  Google Scholar 

  • Stevens ED, Dowd MK, Johnson GP, French AD (2010) Experimental and theoretical electron density distribution of α,α-trehalose dehydrate. Carbohydr Res 345:1469 − 1481. DOI.org/10.1016/j.carres.2010.03.017

    Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron x-ray and neutron fiber diffraction. Macromolecules 37:8548–8555. doi:10.1021/ma0485585

    Article  CAS  Google Scholar 

  • Wikipedia (2013) http://en.wikipedia.org/wiki/Cellulose

Download references

Acknowledgments

The authors thank Drs. Frances Hill and Krystal Fontenot for critical comments on a preliminary version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred D. French.

Rights and permissions

Reprints and permissions

About this article

Cite this article

French, A.D., Concha, M., Dowd, M.K. et al. Electron (charge) density studies of cellulose models. Cellulose 21, 1051–1063 (2014). https://doi.org/10.1007/s10570-013-0042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0042-0

Keywords

Navigation