Skip to main content
Log in

Fast and highly efficient acetylation of xylans in ionic liquid systems

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study high molecular weight pure rye arabinoxylan and spruce arabinoglucuronoxylan were acetylated in ionic liquid (IL) systems. Two different ILs were used in our study. In both IL, using optimized procedures, it was possible to achieve acetylation within 5 min. The first system involved direct dissolution into 1-ethyl-3-methylimidazolium dimethylphosphate ([emim][Me2PO4]), followed by addition of acetyl chloride/pyridine (AcCl/Pyr) and additional chloroform (CHCl3), as co-solvent. The other system involved direct dissolution into the novel protic IL 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH][OAc]), followed by acetic anhydride/1,5-diazabicyclo[4.3.0]non-5-ene (Ac2O/DBN) and no co-solvent added. The full acetyl substitution of the xylans was confirmed by FT IR and 1H NMR. The acetylated xylans maintained a high molecular weight, which was confirmed by gel permeation chromatography. The products were soluble in CHCl3 and dimethyl carbonate, which is considered as a ‘green’ reagent or solvent. This allowed for the casting of the materials into clear transparent films, opening opportunity for further processing and evaluation of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott AP, Bell TJ, Handa S, Stoddart B (2005) O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chem 7(10):705–707. doi:10.1039/b511691k

    Article  CAS  Google Scholar 

  • Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8(3):301–306. doi:10.1039/b513157j

    Article  CAS  Google Scholar 

  • Buchanan CM, Buchanan NL (2009) Cellulose esters and their production in halogenated ionic liquids. WO2009102306A1

  • Buchanan CM, Buchanan NL, Hembre RT, Lambert JL, Donelson ME, Gorbunova MG, Kuo T, Wang B (2010) Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom. US20100029927A1

  • Escalante A, Goncalves A, Bodin A, Stepan A, Sandstroem C, Toriz G, Gatenholm P (2012) Flexible oxygen barrier films from spruce xylan. Carbohydr Polym 87(4):2381–2387. doi:10.1016/j.carbpol.2011.11.003

    Article  CAS  Google Scholar 

  • Fang JM, Sun RC, Tomkinson J, Fowler P (2000) Acetylation of wheat straw hemicellulose B in a new non-aqueous swelling system. Carbohydr Polym 41(4):379–387. doi:10.1016/S0144-8617(99)00102-2

    Article  CAS  Google Scholar 

  • Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10(1):44–46. doi:10.1039/b713289a

    Google Scholar 

  • Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8–synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9(4):343–353. doi:10.1002/mabi.200800329

    Article  CAS  Google Scholar 

  • Gericke M, Liebert T, El Seoud OA, Heinze T (2011) Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng 296(6):483–493. doi:10.1002/mame.201000330

    Article  CAS  Google Scholar 

  • Gericke M, Fardim P, Heinze T (2012) Ionic liquids — promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17(6):7458–7502

    Article  Google Scholar 

  • Glasser WG, Jain RK, Sjostedt MA (1995) Thermoplastic pentosan-rich polysaccharides from biomass. 5430142

  • Grondahl M, Gatenholm P (2005) Role of acetyl substitution in hardwood xylan. In: Marcel Dekker, Inc. pp 509–514

  • Grondahl M, Teleman A, Gatenholm P (2003) Effect of acetylation on the material properties of glucuronoxylan from aspen wood. Carbohydr Polym 52(4):359–366. doi:10.1016/s0144-8617(03)00014-6

    Article  CAS  Google Scholar 

  • Grondahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Biomacromolecules 5(4):1528–1535

    Article  Google Scholar 

  • Hansen NML, Plackett D (2011) Synthesis and characterization of birch wood xylan succinoylated in 1-n-butyl-3-methylimidazolium chloride. Polym Chem 2(9):2010–2020. doi:10.1039/c1py00086a

    Article  CAS  Google Scholar 

  • Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5(6):520–525. doi:10.1002/mabi.200500039

    Article  CAS  Google Scholar 

  • Hoije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromolecules 9(7):2042–2047

    Article  Google Scholar 

  • Jain RK, Sjostedt M, Glasser WG (2000) Thermoplastic xylan derivatives with propylene oxide. Cellulose (Dordrecht, Neth) 7(4):319–336

    Google Scholar 

  • Karatzos SK, Edye LA, Wellard RM (2012) The undesirable acetylation of cellulose by the acetate ion of 1-ethyl-3-methylimidazolium acetate. Cellulose (Dordrecht, Neth) 19(1):307–312. doi:10.1007/s10570-011-9621-0

  • Kilpelaeinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55(22):9142–9148. doi:10.1021/jf071692e

    Article  CAS  Google Scholar 

  • King AWT, Holding A, Parviainen A, Hauru LKJ, Hummel M, Sixta H, Kilpeläinen I (2013) Development of recyclable ionic liquids for lignocellulose processing. Paper presented at the 245th ACS National Meeting, New Orleans

  • King AWT, Kilpelainen I, Heikkinen S, Jarvi P, Argyropoulos DS (2009a) Hydrophobic interactions determining functionalized lignocellulose solubility in dialkylimidazolium chlorides, as probed by 31p nmr. Biomacromolecules 10(2):458–463. doi:10.1021/bm8010159

    Article  CAS  Google Scholar 

  • King AWT, Zoia L, Filpponen I, Olszewska A, Xie H, Kilpelainen I, Argyropoulos DS (2009b) In situ determination of lignin phenolics and wood solubility in imidazolium chlorides using 31P NMR. J Agric Food Chem 57(18):8236–8243. doi:10.1021/jf901095w

    Article  CAS  Google Scholar 

  • King AWT, Parviainen A, Karhunen P, Matikainen J, Hauru LKJ, Sixta H, Kilpelaeinen I (2012) Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Adv 2(21):8020–8026. doi:10.1039/c2ra21287k

    Article  CAS  Google Scholar 

  • Kosan B, Dorn S, Meister F, Heinze T (2010) Preparation and Subsequent Shaping of Cellulose Acetates Using Ionic Liquids. Macromol Mater Eng 295 (7):676–681. doi:10.1002/mame.201000022

  • Leskinen T, King AWT, Kilpelainen I, Argyropoulos DS (2011) Fractionation of lignocellulosic materials with ionic liquids. 1. effect of mechanical treatment. Ind Eng Chem Res 50(22):12349–12357. doi:10.1021/ie200063x

    Article  CAS  Google Scholar 

  • Liu C-F, Zhang A-P, Li W-Y, Yue F-X, Sun R-C (2009a) Homogeneous modification of cellulose in ionic liquid with succinic anhydride using N-bromosuccinimide as a catalyst. J Agric Food Chem 57(5):1814–1820

    Article  CAS  Google Scholar 

  • Liu C, Zhang A, Sun R (2009b) Method for homogeneous modification of cellulose in ionic liquid. CN101497668A

  • Lu F, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J 35(4):535–544. doi:10.1046/j.1365-313X.2003.01817.x

    Article  CAS  Google Scholar 

  • Massonne K, Stegmann V, D’Andola G, Mormann W, Wezstein M, Leng W (2007) Preparation of silylated polysaccharides or cellulose in ionic liquids. WO2007147813A1

  • Parviainen A, King AWT, Mutikainen I, Hummel M, Selg C, Hauru LKJ, Sixta H, Kilpeläinen I (2013) Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids. ChemSusChem. doi:10.1002/cssc.201300143

    Google Scholar 

  • Peng X-w, Ren J-l, Sun R-c (2010) Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid. Biomacromolecules 11(12):3519–3524. doi:10.1021/bm1010118

    Article  Google Scholar 

  • Peng X, Ren J, Zhong L, Sun R (2011) Homogeneous synthesis of hemicellulosic succinates with high degree of substitution in ionic liquid. Carbohydr Polym 86(4):1768–1774. doi:10.1016/j.carbpol.2011.07.018

    Article  CAS  Google Scholar 

  • Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev (Washington, DC, U S) 109 (12):6712–6728. doi:10.1021/cr9001947

  • Qu C, Kishimoto T, Kishino M, Hamada M, Nakajima N (2011) Heteronuclear single-quantum coherence nuclear magnetic resonance (hsqc nmr) characterization of acetylated fir (Abies sachallnensis MAST) Wood Regenerated from Ionic Liquid. J Agric Food Chem 59(10):5382–5389. doi:10.1021/jf200498n

    Article  CAS  Google Scholar 

  • Qu C, Kishimoto T, Ogita S, Hamada M, Nakajima N (2012) Dissolution and acetylation of ball-milled birch (Betula platyphylla) and bamboo (Phyllostachys nigra) in the ionic liquid [Bmim]Cl for HSQC NMR analysis. Holzforschung 66(5):607–614. doi:10.1515/hf.2011.186

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Article  CAS  Google Scholar 

  • Ren J, Sun R, Liu C (2007a) Ionic liquid as solvent for biopolymer: acetylation of hemicelluloses. In 2007a. American Chemical Society, pp CARB-141

  • Ren JL, Sun RC, Liu CF, Cao ZN, Luo W (2007b) Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst. Carbohydr Polym 70(4):406–414. doi:10.1016/j.carbpol.2007.04.022

    Article  CAS  Google Scholar 

  • Ren J, Peng X, Sun R (2011) Method for preparation of maleoyl hemicellulose. CN101974109A

  • Renard CMGC, Jarvis MC (1999) Acetylation and methylation of homogalacturonans 1: optimisation of the reaction and characterisation of the products. Carbohydr Polym 39(3):201–207. doi:10.1016/S0144-8617(99)00006-5

    Article  CAS  Google Scholar 

  • Stepan AM, Hoeije A, Schols HA, de Waard P, Gatenholm P (2012) Arabinose content of arabinoxylans contributes to flexibility of acetylated arabinoxylan films. J Appl Polym Sci 125(3):2348–2355. doi:10.1002/app.36458

    Article  CAS  Google Scholar 

  • Sun R, Fang JM, Tomkinson J, Jones GL (1999) Acetylation of wheat straw hemicelluloses in N N-dimethylacetamide/LiCl solvent system. Ind Crops Prod 10(3):209–218. doi:10.1016/s0926-6690(99)00025-4

    Article  CAS  Google Scholar 

  • Sun R, Sun XF, Tomkinson J (2004) Hemicelluloses and their derivatives. ACS Symp Ser 864(Hemicelluloses):2–22

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1(1):45–70. doi:10.1007/bf00592255

    Article  CAS  Google Scholar 

  • Tombs M, Harding S (1997) An introduction to polysaccharide biotechnology. Taylor and Francis

  • Welton T (1999) Room-Temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev (Washington, D C) 99 (8):2071–083. doi:10.1021/cr980032t

  • Xie H, King A, Kilpelainen I, Granstrom M, Argyropoulos DS (2007) Thorough chemical modification of wood-based lignocellulosic materials in ionic liquids. Biomacromolecules 8(12):3740–3748. doi:10.1021/bm700679s

    Article  CAS  Google Scholar 

  • Zoia L, King AWT, Argyropoulos DS (2011) Molecular weight distributions and linkages in lignocellulosic materials derivatized from ionic liquid media. J Agric Food Chem 59(3):829–838. doi:10.1021/jf103615e

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Knut and Alice Wallenberg foundation for financing this research, carried out in the Wallenberg Wood Science Center. Linda Härdelin is acknowledged for helping with the rheology measurements of the xylan solutions in ILs, Susanne Svensson and Kerstin Jedvert with the GPC measurements and Pirkko Karhunen for her assistance with NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Gatenholm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepan, A.M., King, A.W.T., Kakko, T. et al. Fast and highly efficient acetylation of xylans in ionic liquid systems. Cellulose 20, 2813–2824 (2013). https://doi.org/10.1007/s10570-013-0028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0028-y

Keywords

Navigation