Skip to main content
Log in

A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A detailed physico-chemical characterisation of potential new cellulose sources (rice husk, hemp stalk, and coniferous needles), and microcrystalline cellulose (MCC) manufactured from them, was made in this work. The length and the width of the cellulose crystallites were determined by wide-angle X-ray scattering (WAXS), crystallinities were studied by means of WAXS and solid state cross polarisation magic angle spinning 13C nuclear magnetic resonance (NMR) spectroscopy, and the packing and the cross-sectional shape of the microfibrils were determined by small-angle X-ray scattering. When MCC was prepared from rice husks and hemp stalks an acceptable yield was obtained. Crystallinities obtained with solid state NMR spectroscopy and WAXS were highest for MCC prepared from hemp stalks, and lowest for rice husk MCC. The crystallite sizes of MCC samples studied in this work varied more than in those MCC samples which were prepared from conventional plant sources, and crystallite size and cellulose crystallinity were related. When taking into account rather high values of specific surface, hemp stalks and rice husks appear as a promising raw materials for MCC production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    Article  CAS  Google Scholar 

  • Andersson S, Serimaa R, Torkkeli M, Paakkari T, Saranpää P, Pesonen E (2000) Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: comparision of measuring techniques. J Wood Sci 46:343–349

    Article  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) The crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49(6):531–537

    Google Scholar 

  • Andersson S, Serimaa R, Väänänen T, Paakkari T, Jämsä S, Viitaniemi P (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris L.). Holzforschung 59:422–427

    Article  CAS  Google Scholar 

  • Battista J (1975) Microcrystal polymer science. McGraw-Hill, New York

    Google Scholar 

  • Beckermann G, Pickering K (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos A 39:979–988

    Article  Google Scholar 

  • Di Guardo A, Zaccara S, Cerabolini B, Acciarri M, Terzaghi G, Calamari D (2003) Conifer needles as passive biomonitors of the spatial and temporal distribution of DDT from a point source. Chemosphere 52:789–797

    Article  CAS  Google Scholar 

  • Efremova SV, Korolev YM, Sukharnikov YI (2008) X-ray diffraction characterization of silicon–carbon nanocomposites produced from rice husk and its derivatives. Chem Technol 419:78–81

    CAS  Google Scholar 

  • Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. URL:10.1007/s10853-009-3874-0

    Google Scholar 

  • Feigin L, Svergun D (1987) Structure analysis by small angle X-ray and neutron scattering. Plenum Press, New York

    Google Scholar 

  • Green JW (1963) Methods in carbohydrate chemistry, iiird edn. Academic Press, New York

    Google Scholar 

  • Haworth DT, Zetlmeisl MJ (1968) Thin-layer chromatography of some inorganic complexes using microcrystalline cellulose as the separation medium. Sep Sci Technol 3(2):145–150

    Article  CAS  Google Scholar 

  • Jakob H, Fengel D, Tschegg S, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    Article  CAS  Google Scholar 

  • Jakob H, Tschegg S, Fratzl P (1996) Hydration dependence of the wood-cell structure in Picea abies: a small-angle scattering study. Macromolecules 29:8435–8440

    Article  CAS  Google Scholar 

  • Jenkins B, Baxter L, Miles T (1998) Combustion properties of biomass. Fuel Process Technol 54(1–3):17–46

    Article  CAS  Google Scholar 

  • Knaus S, Bauer-Heim B (2003) Synthesis and properties of anionic cellulose ethers: influence of functional groups and molecular weight on flowability of concrete. Carbohydr Polym 53(4):383–394. doi:10.1016/S0144-8617(03)00106-1, URL: http://www.sciencedirect.com/science/article/B6TFD-48R1WR5-1/2/485a3eecb1216f980075a8f12e66e33c

  • Kotelnikova N, Fengel D, Kotelnikov V (1994) Electron microscopic visualization of existence of weak bonds in cellulose. In: Prepr. of Kyoto Conference on Cellulose, p 64

  • Kurschner K, Popik M (1962) Zur analyse von holzern. Holzforschung 16(1):1–11

    Article  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16(6):999–1015

    Article  Google Scholar 

  • Levis SR, Deasy PB (2001) Pharmaceutical applications of size reduced grades of surfactant co-processed microcrystalline cellulose. Int J Pharm 230(1–2):25–33. doi:10.1016/S0378-5173(01)00843-2, URL: http://www.sciencedirect.com/science/article/B6T7W-44724PW-3/2/0b3b7fa91b51a1734cd7022b64b75a5c

  • Liitiä T, Maunu SL, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003) Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316

    Google Scholar 

  • Liou TH, Chang FW, Lo JJ (1997) Pyrolysis kinetics of acid-leached rice husk. Ind Eng Chem Res 36:568–573

    Article  CAS  Google Scholar 

  • Lovchikova L, Nikonenko S, Plyuta V, Sergeichik S (1997) Spectral reflection characteristics of spruce needles and leaves of trees in the zones with industrially polluted air. J Appl Spectr 64(6):804–808

    Article  CAS  Google Scholar 

  • Marshall K, Sixsmith D (1974) Some physical characteristics of microcrystalline cellulose 1. Powders for pharmaceutical use. Drug Dev Ind Pharm 1(1):51–71. doi:10.3109/03639047409088168, URL: http://informahealthcare.com/doi/abs/10.3109/03639047409088168, http://informahealthcare.com/doi/pdf/10.3109/03639047409088168

  • Maruska A, Liesiene J, Serys A (1996) Regulation of cellulose based adsorbent granule morphology. J Chromatogr A 746:147–160

    Article  CAS  Google Scholar 

  • Matsuoka H, Tanaka H, Hashimoto T, Ise N (1987) Elastic scattering from cubic lattice systems with paracrystalline distortion. J Am Phys Soc 36(3):1754–1765

    Google Scholar 

  • McTiernan KB, Coûteaux MM, Berg B, Berg MP, de Anta RC, Gallardo A, Kratz W, Piussi P, Remacle J, Santo AVD (2003) Changes in chemical composition of Pinus sylvestris needle litter during decomposition along a European coniferous forest climatic transect. Soil Biol Biochem 35(6):801–812. doi:10.1016/S0038-0717(03)00107-X, URL: http://www.sciencedirect.com/science/article/B6TC7-4875VVM-1/2/64094926b24f898960012ca57ec3c0ba

    Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/C0CS00108B, URL:http://dx.doi.org/10.1039/C0CS00108B

    Google Scholar 

  • Newman RH (1999) Estimation of the relative proportions of cellulose Iα and Iβ in wood by carbon-13 nmr spectroscopy. Holzforschung 53(4):335–340

    Article  CAS  Google Scholar 

  • Obolenskaya AV, Shchegolev VP, Akim GL, Akim E, Kossovich NP, Emel’yanova IZ (1965) Practical works on chemistry of wood and cellulose. Forest Industry, Moscow

  • O’Donnell A, Dweib M, Wool R (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64:1135–1145

    Article  Google Scholar 

  • Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69(11–12):1958–1961. doi:10.1016/j.compscitech.2009.04.017, URL: http://www.sciencedirect.com/science/article/B6TWT-4W6Y851-3/2/3fd92d80172fa4e74af0601a9d25c46f, experimental techniques and design in composite materials (ETDCM8) with regular papers

  • Ouajai S, Shanks R (2005) Solvent and enzyme induced recrystallization of mechanically degraded hemp cellulose. Cellulose 13:31–44

    Article  Google Scholar 

  • Penttilä PA, Várnai A, Leppänen K, Peura M, Kallonen A, Jääskeläinen P, Lucenius J, Ruokolainen J, Siika-aho M, Viikari L, Serimaa R (2010) Changes in submicrometer structure of enzymatically hydrolyzed microcrystalline cellulose. Biomacromolecules 11(4):1111–1117. doi:10.1021/bm1001119, URL: http://pubs.acs.org/doi/abs/10.1021/bm1001119, pMID: 20329744, http://pubs.acs.org/doi/pdf/10.1021/bm1001119

    Google Scholar 

  • Petropavlovsky G, Kotelnikova N (1985) Phenomenological model of the fine structure of native cellulose based on the study of heterogeneous and homogeneous destruction. Acta Polymerica 36(2):118–123

    Article  Google Scholar 

  • Rydholm SA (1965) Pulping processes. Interscience Publishers, New York

    Google Scholar 

  • Sanguansri P, Augustin MA (2006) Nanoscale materials development—a food industry perspective. Trends Food Sci Technol 17(10):547–556. doi:10.1016/j.tifs.2006.04.010, URL:http://www.sciencedirect.com/science/article/B6VHY-4K0D7WR-1/2/dee171d8e3796d61a0859e23344ad50f

  • Siriwardena S, Ismail H, Ishiaku U, Perera M (2002) Mechanical and morphological properties of white rice husk ash filled polypropylene/ethylene-propylene-diene terpolymer thermoplastic elastomer composites. J Appl Polym Sci 85(2):438–453

    Article  CAS  Google Scholar 

  • Sivonen H, Nuopponen M, Maunu SL, Sundholm F, Vuorinen T (2003) Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi. Appl Spectrosc 57(3):266–273. URL:http://as.osa.org/abstract.cfm?URI=as-57-3-266

    Google Scholar 

  • Sutinen S, Kivimäenpää M (2000) Cellular and tissue changes in needles. Forest condition in a changing environment—the Finnish case, vol 65. Kluwer, Dordrecht

    Google Scholar 

  • Teeäär R, Serimaa R, Paakkari T (1987) Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polym Bull 17(3):231–237

    Article  Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H, Thomsen A, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Watari T, Umaba K, Torikai T, Imaoka Y (1999) Preparation of porous ceramics from rice husk. In: Nippon Seramikkusu Kyokai Nenkai Koen Yokoshu, pp 123–129

  • Wilke W, Bratrich M (1991) Investigation of the superstructure of polymers during deformation by synchrotron radiation. J Appl Cryst 24:645–650

    Article  CAS  Google Scholar 

  • Yilmaz S, Zengin M (2004) Monitoring environmental pollution in Erzurum by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environ Int 29:1041–1047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Academy of Finland (projects 123386 and 127759) and the National Graduate School in Materials Physics are acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommi Virtanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virtanen, T., Svedström, K., Andersson, S. et al. A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing. Cellulose 19, 219–235 (2012). https://doi.org/10.1007/s10570-011-9636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9636-6

Keywords

Navigation