Skip to main content
Log in

Solvent and enzyme induced recrystallization of mechanically degraded hemp cellulose

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The structural degradation of cellulose fibre from hemp (Cannabis Sativa L.) by a ball-milling process and the recrystallization behavior of the product were studied. A linear increase in the Brunauer–Emmett–Teller specific surface area was observed; indicating the fibre bundles were being crushed and disrupted to single fibres, which was confirmed by SEM. An increase in the milling duration gradually destroyed the crystalline structure of the cellulose fibres, observed by a reduction of the 002 plane intensity in wide angle X-ray scattering measurements. The crystalline order index calculated from the area ratio of the 002 to the 021, 10\(\overline{1}\) and 002 planes was decreased from 65 to 36 after milling for 330 min. Subsequently the lower thermal stability of ball-milled fibre was observed from a decrease in the temperature at the maximum mass loss rate using thermogravimetry. An increase in solvent polarity, solvent-fibre ratio, agitation speed and drying rate resulted in the rearrangement of ball-milled cellulose crystalline structure to a greater order. Moreover, an increase in the BET specific surface area and the amorphous fraction improved the scouring efficiency of the ball-milled cellulose using the pectate lyase enzyme (EC. 4.2.2.2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ago M., Endo T., Hirotsu T. (2004) Crystalline transformation of native cellulose from cellulose I to cellulose Ii polymorph by a ball-milling method with a specific amount of water. Cellulose 11: 163–167

    Article  CAS  Google Scholar 

  • Altunina L.K., Gossen L.P., Tikhonova L.D., Yarmukhametova E.G. (2002) Structural Changes in Cellulose-Containing Materials in the Course of Mechnical Activation. Macromol. Chem. Polymer. Mat. 75(1): 166–167

    CAS  Google Scholar 

  • Asko V. (1971) Heterogeneous acid hydrolysis of cellulose. Part V the effect of ball-milling on the hydrolysability. Paperi ja Puu 53(7): 397–400, 402–408

    Google Scholar 

  • Bang Y.H., Lee S., Park J.B., Cho H.H. (1999) Effect of coagulation conditions on fine structure of regenerated cellulose films made from cellulose/N-Methylmorpholine-N-Oxide/H2O systems. J. Appl. Polymer Sci. 73: 2681–2690

    Article  CAS  Google Scholar 

  • Bertran M.S., Dale B.E. (1985) Enzymeatic hydrolysis and recrystallization behavior of initially amorphous cellulose. Biotechnol. Bioeng. 27: 177–181

    Article  CAS  Google Scholar 

  • Doelker E., Gurny R. (1987) Degrees of crystallinity and polymerization of modified cellulose powders for direct tableting. Powder Technol. 52: 207–213

    Article  CAS  Google Scholar 

  • Furcht P.W., Silla H. (1990) Comparison of simultaneous milling and enzymetic hydrolysis of cellulose in ball mill and attrition mill reactors. Biotechnol. Bioeng. 35: 630–645

    Article  CAS  Google Scholar 

  • Garcia-Jaldon C., Dupeyre D., Vignon M.R. (1998) Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy 14(3): 251–260

    Article  CAS  Google Scholar 

  • Howsmon J.A., Marchessault R.H. (1959) The ball-milling of cellulose fibres and recrystallization effects. J. Appl. Polymer Sci. 1(3): 313–322

    Article  CAS  Google Scholar 

  • Iyer P.B., Sreenivasan S., Chidambareswaran P.K., Patil N.B. (1984) Crystallization of amorphous cellulose. Textile Res. J. 54(11): 732–735

    Article  CAS  Google Scholar 

  • Iyer P.B., Sreenivasan S., Chidambareswaran P.K., Patil N.B. (1986) Recrystallization of cellulose. Textile Res. J. 56(8): 509–11

    CAS  Google Scholar 

  • Kothari S.H., Kumar V., Banker G.S. (2002) Comparative evaluations of powder and mechanical properties of low crystallinity cellulose, microcrystalline celluloses and powder celluloses. Int. J. Pharm. 232: 69–80

    Article  PubMed  CAS  Google Scholar 

  • Kwan C.C., Ghadiri M., Dimitris G.P., Bentham A.C. (2003) The effects of operating conditions on the milling of microcrystalline cellulose. Chem. Eng. Technol. 26(2): 185–190

    Article  CAS  Google Scholar 

  • Liang X.H., Gu L.Z., Ding E.Y. (1993) Recrystallization behavior of cellulose and lignocellulose from Pinus massoniana. Wood Sci. Technol. 27(6): 461–467

    Article  CAS  Google Scholar 

  • Majdanac L.D., Teodorovic M.J. (1987) The influence of supermolecular structure on the kinetics of thermal decompopsition of cellulose. Acta Polymerica 38(12): 661–666

    Article  CAS  Google Scholar 

  • Marx-Figini M., Victor-Figini R. (1995) Studies on the mechanical degradation of cellulose. Die Angewandte Makromolekulare Chemie 224: 179–189

    Article  CAS  Google Scholar 

  • Ouajai S., Hodzic A., Shanks R.A. (2004) Morphology and grafting modification of natural cellulose fibre. J. Appl. Polymer Sci. 94: 2456–2465

    Article  CAS  Google Scholar 

  • Ouajai S., Shanks R.A. (2005) Morphology and structure of bioscouring hemp fibre. Macromol. Biosci. 5: 124–134

    Article  PubMed  CAS  Google Scholar 

  • Pitchumani R., Zhupanska O., Meesters G.M.H., Scarlett B. (2004) Measurement and characterization of particle strength using a new robotic compression tester. Powder Technol. 143–144: 56–64

    Article  CAS  Google Scholar 

  • Qui W., Endo T., Hirotsu T. (2004) Interfacial interactions of a novel mechanochemical composite of cellulose with maleated polypropylene. J. Appl. Polymer Sci. 94: 1326–1335

    Article  CAS  Google Scholar 

  • Ramlakhan M., Yu Wu C., Watano S., N. Dave R., Pfeffer R. (2000) Dry particle coating using magnetically assisted impaction coating: Modification of surface properties and optimization of system and operating parameters. Powder Technol. 112: 137–148

    Article  CAS  Google Scholar 

  • Scheirs J., Camino G., Tumiatti W. (2001) Overview of water evolution during the thermal degradation of cellulose. Eur. Polymer J. 37: 933–942

    Article  CAS  Google Scholar 

  • Segal L., Creely J.J., Martin Jr. A.E., Conrad C.M. (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res. J. 29: 786–794

    CAS  Google Scholar 

  • Tanaka F., Fukui N. (2004) The behavior of cellulose molecules in aqueous environment. Cellulose 11: 33–38

    Article  CAS  Google Scholar 

  • Vignon M.R., Dupeyre D., Garcia-Jaldon C. (1996) Morphological characterization of steam-exploded hemp fibers and their utilization in polypropylene-based composites. Bioresource Technol. 58(2): 203–215

    Article  CAS  Google Scholar 

  • Vinson K.D. 1988. Process for making expanded fibre. United State Patent Office. United State of America, The Buckeye Cellulose corporation.

  • Zografi G., Kontny M.J., Yang A.Y.S., Brenner G.S. (1984) Surface area and water vapor sorption of microcrystalline cellulose. Int. J. Pharm. 18(1984): 99–116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank King Mongkut’s Institute of Technology North Bangkok (KMITNB), Thailand for a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.A. Shanks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouajai, S., Shanks, R. Solvent and enzyme induced recrystallization of mechanically degraded hemp cellulose. Cellulose 13, 31–44 (2006). https://doi.org/10.1007/s10570-005-9020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-005-9020-5

Keywords

Navigation