Skip to main content
Log in

A semi-analytic algorithm for constructing lower dimensional elliptic tori in planetary systems

  • Original article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We adapt the Kolmogorov’s normalization algorithm (which is the key element of the original proof scheme of the KAM theorem) to the construction of a suitable normal form related to an invariant elliptic torus. As a byproduct, our procedure can also provide some analytic expansions of the motions on elliptic tori. By extensively using algebraic manipulations on a computer, we explicitly apply our method to a planar four-body model not too different with respect to the real Sun–Jupiter–Saturn–Uranus system. The frequency analysis method allows us to check that our location of the initial conditions on an invariant elliptic torus is really accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V.I.: Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Usp. Mat. Nauk 18, 13; Russ. Math. Surv. 18, 9 (1963a)

  • Arnold, V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Usp. Math. Nauk 18(6), 91; Russ. Math. Surv. 18(6), 85 (1963b)

  • Benettin G., Galgani L., Giorgilli A., Strelcyn J.M.: A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method. Nuovo Cimento 79, 201–223 (1984)

    Article  MathSciNet  Google Scholar 

  • Biasco L., Chierchia L., Valdinoci E.: Elliptic two-dimensional invariant tori for the planetary three-body problem. Arch. Ration. Mech. Anal. 170, 91–135 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Biasco L., Chierchia L., Valdinoci E.: N-dimensional elliptic invariant tori for the planar (N+1)-body problem. SIAM J. Math. Anal. 37(5), 1560–1588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Birkhoff, G.D.: Dynamical Systems. New York (1927)

  • Castellà E., Jorba A.: On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem. Celest. Mech. Dyn. Astron. 76, 35–54 (2000)

    Article  ADS  MATH  Google Scholar 

  • Celletti A., Giorgilli A., Locatelli U.: Improved estimates on the existence of invariant tori for Hamiltonian systems. Nonlinearity 13, 397–412 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Deprit A.: Elimination of the nodes in problems of n bodies. Celest. Mech. Dyn. Astron. 30, 181–195 (1983)

    MathSciNet  MATH  Google Scholar 

  • Gabern F., Jorba A.: A restricted four-body model for the dynamics near the Lagrangian points of the Sun–Jupiter system. DCDS-B 1, 143–182 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Gabern F., Jorba A., Locatelli U.: On the construction of the Kolmogorov normal form for the Trojan asteroids. Nonlinearity 18(4), 1705–1734 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Giorgilli A.: Quantitative methods in classical perturbation theory. In: Roy, A.E., Steves, B.D. (eds) Proceedings of the Nato ASI School “From Newton to Chaos: Modern Techniques for Understanding and Coping with Chaos in N-Body Dynamical Systems., Plenum Press, New York (1995)

    Google Scholar 

  • Giorgilli A., Locatelli U.: Kolmogorov theorem and classical perturbation theory. J. App. Math. Phys. (ZAMP) 48, 220–261 (1997a)

    Article  MathSciNet  MATH  Google Scholar 

  • Giorgilli A., Locatelli U.: On classical series expansion for quasi-periodic motions. MPEJ 3(5), 1–25 (1997b)

    MathSciNet  Google Scholar 

  • Giorgilli A., Locatelli U., Sansottera M.: Kolmogorov and Nekhoroshev theory for the problem of three bodies. Celest. Mech. Dyn. Astron. 104, 159–173 (2009a)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Giorgilli A., Locatelli U., Sansottera M.: Su un’estensione della teoria di Lagrange per i moti secolari. Istituto Lombardo (Rend. Scienze) 143, 223–240 (2009b)

    Google Scholar 

  • Giorgilli, A., Locatelli U., Sansottera, M.: A constructive algorithm of the normal form for lower dimensional elliptic tori (In preparation)

  • Jefferys W.H., Moser J.: Quasi-periodic solutions for the three-body problem. Astron. J. 71, 568–578 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  • Jorba A., Villanueva J.: On the persistence of lower dimensional invariant tori under quasiperiodic perturbations. J. Nonlin. Sci. 7, 427–473 (1997a)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Jorba A., Villanueva J.: On the normal behaviour of partially elliptic lower dimensional tori of Hamiltonian Systems. Nonlinearity 10, 783–822 (1997b)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Jorba A., Villanueva J.: Numerical computation of normal forms around some periodic orbits of the restricted three body problem. Phys. D 114, 197–229 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A.N.: Preservation of conditionally periodic movements with small change in the Hamilton function, Dokl. Akad. Nauk SSSR, 98, 527 (1954). (Engl. transl. In: Los Alamos Scientific Laboratory translation LA-TR-71-67) (reprinted in: Lecture Notes in Physics, 93)

  • Lagrange, J.L.: Sur l’altération des moyens mouvements des planètes. Mem. Acad. Sci. Berlin 199 (1776); Oeuvres Complètes, VI, 255. Gauthier–Villars, Paris (1869)

  • Lagrange, J.L.: Théorie des variations séculaires des éléments des planètes. Première partie contenant les principes et les formules générales pour déterminer ces variations. Nouveaux mémoires de l Académie des Sciences et Belles-Lettres de Berlin (1781); Oeuvres Complètes, pp. 125–207. Vol. 5, Gauthier–Villars, Paris (1870)

  • Lagrange, J.L.: Théorie des variations séculaires des éléments des planètes. Seconde partie contenant la détermination de ces variations pour chacune des planètes pricipales. Nouveaux mémoires de l Académie des Sciences et Belles-Lettres de Berlin (1782); Oeuvres Complètes, pp. 211–489. Vol. 5, Gauthier–Villars, Paris (1870)

  • Laplace, P.S.: Mémoire sur les solutions particulières des équations différentielles et sur les inégalités séculaires des planètes (1772); Oeuvres Complètes, pp. 325. Vol. 9, Gauthier-Villars, Paris (1895)

  • Laplace, P.S.: Mémoire sur les inégalités séculaires des planètes et des satellites. Mem. Acad. royale des Sci. de Paris (1784); Oeuvres Complètes, pp. 49. Vol. 11, Gauthier-Villars, Paris (1895)

  • Laplace, P.S.: Théorie de Jupiter et de Saturne. Mem. Acad. royale des Sci. de Paris (1785); Oeuvres Complètes, pp. 164. Vol. 11, Gauthier-Villars, Paris (1895)

  • Laskar, J.: Systèmes de variables et éléments. In: Benest, D., Froeschlé, C. (eds.) Les Méthodes modernes de la Mécanique Céleste, pp. 63–87. Editions Frontières (1989)

  • Laskar J., Robutel P.: Stability of the planetary three-body problem—I. Expansion of the planetary hamiltonian. Celest. Mech. Dyn. Astron. 62, 193–217 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Laskar, J.: Introduction to frequency map analysis. In Simò, C. (managing ed) Proceedings of the NATO ASI School: “Hamiltonian Systems with Three or More Degrees of Freedom”, S’Agaro (Spain), June 19–30, 1995, pp. 134–150. Kluwer (1999)

  • Laskar, J.: Frequency Map analysis and quasi periodic decompositions. In: Benest et al. (managing eds.) Hamiltonian Systems and Fourier analysis. Taylor and Francis (2005)

  • Laskar J., Robutel P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lieberman B.: Existence of quasi-periodic solutions to the three-body problem. Celest. Mech. 3, 408–426 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Locatelli U., Giorgilli A.: Invariant tori in the secular motions of the three-body planetary systems. Celest. Mech. Dyn. Astron. 78, 47–74 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Locatelli U., Giorgilli A.: Construction of the Kolmogorov’s normal form for a planetary system. Regul. Chaotic Dyn. 10(2), 153–171 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Locatelli U., Giorgilli A.: Invariant tori in the Sun–Jupiter–Saturn system. DCDS-B 7, 377–398 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Malige F., Robutel P., Laskar J.: Partial reduction in the N-body planetary problem using the angular momentum integral. Celest. Mech. Dyn. Astron. 84, 283–331 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gött,. II Math. Phys. Kl, 1–20 (1962)

  • Pinzari, G.: On the Kolmogorov Set for Many-Body Problems. Ph.D. thesis, Università di Roma Tre (2009). Publicly available at the web page: http://ricerca.mat.uniroma3.it/dottorato/Tesi/pinzari.pdf

  • Poincaré H.: Leçons de Mécanique Céleste, tomes I–II. Gauthier-Villars, Paris (1905)

    Google Scholar 

  • Poincaré, H.: Les méthodes nouvelles de la Mécanique Céleste. Gauthier-Villars, Paris (1892) (Reprinted by Blanchard 1987)

  • Pöschel J.: On elliptic lower dimensional tori in Hamiltonian systems. Math. Z. 202, 559–608 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Pöschel J.: A KAM-theorem for some nonlinear PDEs. Ann. Scuola Norm. Pisa Cl. Sci. 23, 119–148 (1996)

    MATH  Google Scholar 

  • Robutel P.: Stability of the planetary three-body problem —II. KAM theory and existence of quasiperiodic motions. Celest. Mech. Dyn. Astron. 62, 219–261 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sansottera, M., Locatelli, U. Giorgilli, A.: On the stability of the secular evolution of the planar Sun–Jupiter–Saturn–Uranus system. Math. Comput. Simul. (2011). doi:10.1016/j.matcom.2010.11.018

  • Standish, E.M.: JPL Planetary and Lunar Ephemerides, DE405/LE405. Jet Propulsion Laboratory—Interoffice memorandum, IOM 312.F–98–048 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Sansottera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansottera, M., Locatelli, U. & Giorgilli, A. A semi-analytic algorithm for constructing lower dimensional elliptic tori in planetary systems. Celest Mech Dyn Astr 111, 337 (2011). https://doi.org/10.1007/s10569-011-9375-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-011-9375-x

Keywords

Mathematics Subject Classification (2010)

Navigation