Skip to main content
Log in

A study of low-energy transfer orbits to the Moon: towards an operational optimization technique

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In the Earth–Moon system, low-energy orbits are transfer trajectories from the Earth to a circumlunar orbit that require less propellant consumption when compared to the traditional types of orbits. In this work we use a Monte Carlo approach to study a great number of such transfer orbits over a wide range of initial conditions. We make statistical and operational considerations on the resulting data, leading to the description of an aid to finding “optimal” mission orbits with the tools of multi-objective optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assadian N., Pourtakdoust S.H.: Multiobjective genetic optimization of Earth–Moon trajectories in the restricted four-body problem. Adv. Space Res. 45(3), 398–409 (2010)

    Article  ADS  Google Scholar 

  • Belbruno, E.: Lunar capture orbits, a method of constructing earth moon trajectories and the lunar gas mission. In: 19th AIAA/DGLR/JSASS Intern. Electric Propulsion Confer., Colorado Springs, Colorado, AIAA-87-1054 (1987)

  • Belbruno E.: Resonance transitions associated to weak capture in the restricted three-body problem. Adv. Space Res. 42(8), 1330–1351 (2008)

    Article  ADS  Google Scholar 

  • Belbruno E., Marsden B.G.: Resonance hopping in comets. Astron. J. 113, 1433 (1997)

    Article  ADS  Google Scholar 

  • Belbruno, E., Miller, J.: A ballistic lunar capture trajectory for japanese spacecraft hiten. Internal document JPL IOM 312/90.4- 1731, Jet Propulsion Lab., Pasadena, CA (1990)

  • Belbruno E.A., Miller J.K.: Sun-perturbed earth-to-moon transfers with ballistic capture. J. Guid. Control Dyn. 16(4), 770–775 (1993)

    Article  ADS  Google Scholar 

  • Bello Mora, M., Graziani, F., Teofilatto, P., Circi, C., Porfilio, M., Hechler, M.: A systematic analysis on weak stability boundary transfers to the moon. Proc. 51st. Intern. Astronaut. Cong. (2000)

  • Callaghan, A., Lewis, K.: A 2-phase aspiration-level and utility theory approach to large scale design. In: 2000 ASME Design Engineering Technical Conferences (2000)

  • Capuzzo-Dolcetta R., Mastrobuono-Battisti A., Maschietti D.: Nbsymple, a double parallel, symplectic n-body code running on graphic processing units. New Astron. 16(4), 284–295 (2010)

    ADS  Google Scholar 

  • Cartwright J.H.E., Piro O.: The dynamics of Runge-Kutta methods (1992)

  • Circi C., Teofilatto P.: On the dynamics of weak stability boundary lunar transfers. Celest. Mech. Dyn. Astron. 79, 41–72 (2001)

    Article  ADS  MATH  Google Scholar 

  • Das I.: A preference ordering among various Pareto optimal alternatives. Struct. Multidiscip. Optim. 18(1), 30–35 (1999)

    Article  Google Scholar 

  • Giancotti M., Pontani M., Teofilatto P.: Lunar capture trajectories and homoclinic connections through isomorphic mapping. Celest. Mech. Dyn. Astron. 114, 55–76 (2012)

    Article  ADS  Google Scholar 

  • Gomez, G., Koon, W., Lo, M., Marsden, J., Masdemont, J., Ross, S.: Invariant manifolds, the spatial three-body problem and petit grand tour of jovian moons. In: Libration Point Orbits and Applications, World Scientific, River Edge, pp. 587–601 (2002)

  • Han S.C., Mazarico E., Rowlands D., Lemoine F., Goossens S.: New analysis of lunar prospector radio tracking data brings the nearside gravity field of the moon with an unprecedented resolution. Icarus 215(2), 455–459 (2011). doi:10.1016/j.icarus.2011.07.020

    Article  ADS  Google Scholar 

  • Hazelrigg G.: Systems Engineering: An Approach to Information-Based Design. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  • Horn, J., Nafpliotis, N., Goldberg, D.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. Proc. 1st. Piscataway, NJ, pp. 82–87 (1994)

  • Kasprzak E.M.: Pareto analysis in multiobjective optimization using the colinearity theorem and scaling method. Struct. Multidiscip. Optim. 22(3), 208–218 (2001)

    Article  Google Scholar 

  • Kawaguchi J., Yamakawa H., Uesugi T., Matsuo H.: On making use of lunar and solar gravity assists in lunar-a, planet-b missions. Acta Astronautica 35(9–11), 633–642 (1995)

    Article  ADS  Google Scholar 

  • Kinoshita H, Yoshida H, Nakai H: Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 90, 59–71 (1991)

    Article  ADS  Google Scholar 

  • Koon W., Lo M., Marsden J., Ross S.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427469 (2000)

    Article  MathSciNet  Google Scholar 

  • Koon W., Lo M., Marsden J., Ross S.: Low energy transfer to the moon. Celest. Mec. Dyn. Astron. 81, 63–73 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • MacKay, R.S.: Some aspects of the dynamics and numerics of Hamiltonian systems. In: Broomhead, D.S., Iserles, A. (eds) The Dynamics of Numerics and the Numerics of Dynamics, Clarendon Press, Oxford, pp. 137–193 (1992)

  • Mengali G., Quarta A.A.: Optimization of biimpulsive trajectories in the earth–moon restricted three-body system. J. Guid. Control Dyn. 28(2), 209–216 (2005)

    Article  Google Scholar 

  • Menyuk C.: Some properties of the discrete Hamiltonian method. Physica D Nonlinear Phenomena 11(1–2), 109–129 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Miettinen K.: Some methods for nonlinear multi-objective optimization. Lect. Notes Comput. Sci. 1993, 1–20 (2001)

    Article  MathSciNet  Google Scholar 

  • Mingotti G., Topputo F., Bernelli-Zazzera F.: Low-energy, low-thrust transfers to the moon. Celest. Mech. Dyn. Astron. 105, 61–74 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: A method to design efficient low-energy, low-thrust transfers to the moon. In: Nonlinear and Complex Dynamics, Springer New York, pp. 15–37 (2011)

  • Yagasaki K.: Sun-perturbed earth-to-moon transfers with low energy and moderate flight time. Celest. Mech. Dyn. Astron. 90, 197–212 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yamakawa, H., Kawaguchi, J., Ishii, N., Matsuo, H.: On earth–moon transfer trajectory with gravitational capture. In: AAS/AIAA Astrodynamics Specialist Conference, Victoria, CA, aAS paper 93-633 (1993)

  • Yoshida H.: Construction of higher order symplectic integrators. Phys Lett 150(5,6,7), 262–268 (1990)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Giancotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capuzzo-Dolcetta, R., Giancotti, M. A study of low-energy transfer orbits to the Moon: towards an operational optimization technique. Celest Mech Dyn Astr 115, 215–232 (2013). https://doi.org/10.1007/s10569-012-9458-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9458-3

Keywords

Navigation