Skip to main content
Log in

Lunar capture trajectories and homoclinic connections through isomorphic mapping

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Analysis and design of low-energy transfers to the Moon has been a subject of great interest for many decades. This paper is concerned with a topological study of such transfers, with emphasis to trajectories that allow performing lunar capture and those that exhibit homoclinic connections, in the context of the circular restricted three-body problem. A fundamental theorem stated by Conley locates capture trajectories in the phase space and can be condensed in a sentence: “if a crossing asymptotic orbit exists then near any such there is a capture orbit”. In this work this fundamental theoretical assertion is used together with an original cylindrical isomorphic mapping of the phase space associated with the third body dynamics. For a given energy level, the stable and unstable invariant manifolds of the periodic Lyapunov orbit around the collinear interior Lagrange point are computed and represented in cylindrical coordinates as tubes that emanate from the transformed periodic orbit. These tubes exhibit complex geometrical features. Their intersections correspond to homoclinic orbits and determine the topological separation of long-term lunar capture orbits from short-duration capture trajectories. The isomorphic mapping is proven to allow a deep insight on the chaotic motion that characterizes the dynamics of the circular restricted three-body, and suggests an interesting interpretation, and together corroboration, of Conley’s assertion on the topological location of lunar capture orbits. Moreover, an alternative three-dimensional representation of the phase space is profitably employed to identify convenient lunar periodic orbits that can be entered with modest propellant consumption, starting from the Lyapunov orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barden B.T., Howell K.C., Lo M.W.: Application of dynamical systems theory to trajectory design for a libration point mission. J. Astronaut. Sci. 45(2), 161–178 (1997)

    MathSciNet  Google Scholar 

  • Belbruno E.: Capture Dynamics and Chaotic Motions in Celestial Mechanics. Princeton University Press, Princeton (2004)

    MATH  Google Scholar 

  • Belbruno E., Miller J.K.: Sun-perturbed Earth-to-Moon transfers with ballistic capture. J. Guid. Control Dyn. 16, 770–775 (1993)

    Article  ADS  Google Scholar 

  • Bennett A.: Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem. Icarus 4(2), 177–187 (1965)

    Article  ADS  Google Scholar 

  • Birkhoff G.D.: The restricted problem of three bodies. Rend. Circ. Matem. Palermo XXXIX, 265–334 (1915)

    Article  Google Scholar 

  • Bray T.A., Goudas C.L.: Doubly symmetric orbits about the collinear Lagrangian points. Astron. J. 72(2), 202–213 (1967)

    Article  ADS  Google Scholar 

  • Breakwell J.V., Brown J.V.: The halo family of 3-dimensional periodic orbits in the Earth–Moon restricted 3-body problem. Celest. Mech. Dyn. Astron. 20, 389–404 (1979)

    MATH  Google Scholar 

  • Broucke, R.A.: Periodic orbits in the restricted three-body problem with Earth–Moon masses. Pasadena, Jet Propulsion Laboratory, California Institute of Technology, 1 (1968)

  • Buck, T., Griffin, F.L., Longley, W.R., Moulton, F.R., Buchanan, D., MacMillan, W.D.: Periodic Orbits, Carnegie Institution of Washington, Washington (1920)

  • Conley C.: Low energy transit orbits in the restricted three-body problem. J. Appl. Math. 16(4), 732–746 (1968)

    MathSciNet  MATH  Google Scholar 

  • Conley C.: On the ultimate behavior of orbits with respect to an unstable critical point I. Oscillating, asymptotic, and capture orbits. J. Differ. Equ. 5(1), 136–158 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Conway B.A., Martin C., Ibánz P.: Optimal low-thrust trajectories to the interior Earth–Moon Lagrange point. In: Perozzi, E., Ferraz-Mello, S. (eds.) Space Manifold Dynamics, p. 161, Springer, New York (2010)

    Google Scholar 

  • Darwin G.: Periodic orbits. Acta Mathematica 21, 99–242 (1997)

    Article  MathSciNet  Google Scholar 

  • Davis K., Anderson R., Scheeres D., Born G.: The use of invariant manifolds for transfers between unstable periodic orbits of different energies. Celest. Mech. Dyn. Astron. 107, 471–485 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Davis K., Anderson R., Scheeres D., Born G.: Optimal transfers between unstable periodic orbits using invariant manifolds. Celest. Mech. Dyn. Astron. 109, 241–264 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  • Egorov V.: The capture problem in the three body restricted orbital problem. Artif. Satell. Earth 3, 3–17 (1961)

    Google Scholar 

  • Engelbrecht A.P.: Computational Intelligence: An Introduction. Wiley, London (2007)

    Google Scholar 

  • Farquhar R.W., Kamel A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7(4), 458–473 (1973)

    Article  ADS  MATH  Google Scholar 

  • Gómez G., Marcote M.: High-order analytical solutions of Hill equations. Celest. Mech. Dyn. Astron. 94(2), 197–211 (2006)

    Article  ADS  MATH  Google Scholar 

  • Gomez, G., Masdemont, J.: Some zero cost transfers between libration points orbits. In: AAS/AIAA Space Flight Mechanics Meeting, Clearwater, FL. Paper AAS 00-177 (2000)

  • Guibout V.M., Scheeres D.J.: Periodic orbits from generating functions. Adv. Astronaut. Sci. 116(2), 1029–1048 (2004)

    Google Scholar 

  • Heppenheimer T., Porco C.: New contributions to the problem of capture. Icarus 30(2), 385–401 (1977)

    Article  ADS  Google Scholar 

  • Hill G.W.: Review of Darwin’s periodic orbits. Astron. J. 18, 120 (1898)

    Article  ADS  Google Scholar 

  • Hénon M.: New families of periodic orbits in Hill’s problem of three bodies. Celest. Mech. Dyn. Astron. 85, 223–246 (2003)

    Article  ADS  MATH  Google Scholar 

  • Horedt G.P.: Capture of planetary satellites. Astron. J. 81, 675–680 (1976)

    Article  ADS  Google Scholar 

  • Howell K.C., Pernicka H.J.: Numerical determination of Lissajous trajectories in the restricted three-body problem. Celest. Mech. Dyn. Astron. 41(1–4), 107–124 (1987)

    Google Scholar 

  • Hyeraci N., Topputo F.: Method to design ballistic capture in the elliptic restricted three-body problem. J. Guid. Control Dyn. 33(6), 1814–1823 (2010)

    Article  Google Scholar 

  • Li M., Zheng J.: Indirect transfer to the earthmoon l1 libration point. Celest. Mech. Dyn. Astron. 108, 203–213 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lo M.W., Williams B.G., Bollman W.E., Han D.S., Han Y.S., Bell J.L. et al.: Genesis mission design. J. Astronaut. Sci. 49(1), 169–184 (2001)

    Google Scholar 

  • Marsden J.E., Koon W.S., Lo M.W., Ross S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Marsden J.E., Koon W.S., Lo M.W., Ross S.D.: Constructing a low energy transfer between Jovian Moons. Contemp. Math. 292, 129–145 (2002)

    Article  MathSciNet  Google Scholar 

  • Martin, C., Pontani, M., Conway, B.A.: New numerical methods for determining periodic orbits in the circular restricted three-body problem. In: Proceedings of 61st International Astronautical Congress (2010)

  • Martinex, R., Llibre, J., Simo, C.: Dynamics and Mission Design Near Libration Points, vol. I: Fundamentals: The Case of Collinear Libration Points (World Scientific Monograph Series in Mathematics). World Scientific Pub Co Inc., Singapore (2001)

  • Masdemont J., Gomez G., Jorba A., Simo C.: Study of the transfer from the Earth to a halo orbit around the equilibrium point L1. Celest. Mech. Dyn. Astron. 56(4), 541–562 (1993)

    Article  ADS  MATH  Google Scholar 

  • Masdemont J., Gómez G., Simó C.: Quasihalo orbits associated with libration points. J. Astronaut. Sci. 46(2), 135–176 (1998)

    MathSciNet  Google Scholar 

  • Masdemont J., Jorba A., Simo C., Gomez G.: Dynamics and Mission Design Near Libration Points, vol. III: Advanced Methods for Collinear Points. World Scientific Pub Co Inc., Singapore (2001)

    Google Scholar 

  • Marson R., Pontani M., Perozzi E., Teofilatto P.: Using space manifold dynamics to deploy a small satellite constellation around the Moon. Celest. Mech. Dyn. Astron. 106, 117–142 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Pontani M., Conway B.: Particle swarm optimization applied to space trajectories. J. Guid. Control Dyn. 33(5), 1429–1441 (2010)

    Article  Google Scholar 

  • Pontani M., Teofilatto P.: Topology of lunar capture orbits: a numerical study. J. Aerosp. Eng. Sci. Appl. III(1), 49–63 (2011)

    Google Scholar 

  • Richardson D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22, 241–253 (1980)

    Article  ADS  MATH  Google Scholar 

  • Stroemgren E.: Connaissance actuelle des orbites dans le probleme des trois corps. Publikationer Og mindre Meddeler fra Kobenhavns Observatorium 100, 1–44 (1933)

    ADS  Google Scholar 

  • Szebehely V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press, London (1967)

    Google Scholar 

  • Vaquero, M., Howell, K.C.: Poincaré maps and resonant orbits in the restricted three-body problems. In: AAS Astrodynamics Specialist Conference, Girdwood, AK. Paper AAS 11-428 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Pontani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giancotti, M., Pontani, M. & Teofilatto, P. Lunar capture trajectories and homoclinic connections through isomorphic mapping. Celest Mech Dyn Astr 114, 55–76 (2012). https://doi.org/10.1007/s10569-012-9435-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9435-x

Keywords

Navigation