Skip to main content
Log in

Displaced non-Keplerian orbits using impulsive thrust

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper investigates new families of displaced, highly non-Keplerian orbits in the two-body problem and artificial equilibria in the circular restricted three-body problem. The families of orbits presented extend prior work by using periodic impulses to generate displaced orbits rather than continuous thrust. The new displaced orbits comprise a sequence of individual Keplerian arcs whose intersection is continuous in position, with discontinuities in velocity removed using impulses. For frequent impulses the new families of orbits approximate continuous thrust non-Keplerian orbits found in previous studies. To generate approximations to artificial equilibria in the circular restricted three-body problem, periodic impulses are used to generate a sequence of connected three-body arcs which begin and terminate at a fixed position in the rotating frame of reference. Again, these families of orbits reduce to the families of artificial equilibria found using continuous thrust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin R.E., Dod R.E., Terwilliger C.H.: The ubiquitous solar electric propulsion stage. Acta Astronaut. 4(5–6), 671–694 (1977)

    Article  Google Scholar 

  • Baoyin H., McInnes C.R.: Solar sail halo orbits at the Sun-Earth artificial L1 point. Celest. Mech. Dyn. Astron. 94(2), 155–171 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Baig S., McInnes C.R.: Artificial three-body equilibria for hybrid low-thrust propulsion. J. Guid. Control Dyn. 31(6), 1644–1655 (2008)

    Article  Google Scholar 

  • Baig S., McInnes C.R.: Artificial halo orbits for low-thrust propulsion spacecraft. Celest. Mech. Dyn. Astron. 104(4), 321–335 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Baig S., McInnes C.R.: Light-levitated geostationary orbits are feasible. J. Guid. Control Dyn. 33(3), 782–793 (2010)

    Article  Google Scholar 

  • Betounes D.: Differential Equations: Theory and Applications, pp. 201–207. Springer, New York (2010)

    Book  MATH  Google Scholar 

  • Bombardelli C., Pelaez J.: On the stability of artificial equilibrium points in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 109, 13–26 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • Clohessy W.H., Wiltshire R.S.: Terminal guidance for satellite rendezvous. J. Aerosp. Sci. 27(9), 653–658 (1960)

    MATH  Google Scholar 

  • Dankowicz H.: Some special orbits in the two-body problem with radiation pressure. Celest. Mech. Dyn. Astron. 58(4), 353–370 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Dusek H.M.: Motion in the vicinity of libration points of a generalized restricted three-body model. Prog. Astronaut. Aeronaut. 17, 37–54 (1966)

    Google Scholar 

  • Farres A., Jorba A.: Periodic and quasi-periodic motions of a solar sail close to SL1 in the Earth-Sun system. Celest. Mech. Dyn. Astron. 107(1–2), 233–253 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Forward R.L.: Light levitated geostationary cylindrical orbits using perforated light sails. J. Astronaut. Sci. 32(2), 221–226 (1984)

    ADS  Google Scholar 

  • Gong S., Li J., Baoyin H.: Formation flying solar sail gravity tractors in displaced orbit for towing near-Earth asteroids. Celest. Mech. Dyn. Astron. 105(1–3), 159–177 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Heiligers, J.: Displaced geostationary orbits using hybrid low-thrust propulsion. In: 61st Congress of the International Astronautical IAC.10.E2.1.2. Prague, Czech Republic, 27 Sept–1 Oct (2010)

  • Hope A., Trask A.: Pulsed thrust method for hover formation flying. Adv. Astronaut. Sci. 116, 2423–2433 (2003)

    Google Scholar 

  • McInnes C.R., Simmons J.F.L.: Solar sail halo orbits I: heliocentric case. J. Spacecr. Rockets 29(4), 466–471 (1992a)

    Article  ADS  Google Scholar 

  • McInnes C.R., Simmons J.F.L.: Solar sail halo orbits II: geocentric case. J. Spacecr. Rockets 29(4), 472–479 (1992b)

    Article  ADS  Google Scholar 

  • McInnes C.R., McDonald A.J.C., Simmons J.F.L., MacDonald E.: Solar sail parking in restricted three-body systems. J. Guid. Control Dyn. 17(2), 399–406 (1994)

    Article  ADS  MATH  Google Scholar 

  • McInnes C.R.: The existence and stability of families of displaced two-body orbits. Celest. Mech. Dyn. Astron. 67(2), 167–180 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • McInnes C.R.: Dynamics, stability, and control of displaced non-Keplerian orbits. J. Guid. Control Dyn. 21(5), 799–805 (1998)

    Article  Google Scholar 

  • McKay, R.J., Macdonald, M., Bosquillon de Frescheville, F., Vasile, M., McInnes, C.R., Biggs, J.D.: Non-Keplerian orbits using low thrust, high ISP propulsion systems. In: 60th Congress of the International Astronautical IAC.09.C1.2.8, Daejeon, Republic of Korea, Oct 12th–16th (2009)

  • Mengali G., Quarta A.A.: Non-Keplerian orbits for electric sails. Celest. Mech. Dyn. Astron. 105(1–3), 179–195 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Morimoto M.Y., Yamakawa H., Uesugi K.: Artificial equilibrium points in the low-thrust restricted three-body problem. J. Guid. Control Dyn. 30(5), 1563–1567 (2007)

    Article  Google Scholar 

  • Nock, K.T.: Rendezvous with Saturn’s rings. Anneaux des Planetes, IAU Coll. No. 75, Cepadues Editions, Toulouse, 743–759 (1984)

  • Sawai S., Scheeres D.J., Broschart S.: Control of hovering spacecraft using altimetry. J. Guid. Control Dyn. 25(4), 786–795 (2002)

    Article  Google Scholar 

  • Scheeres D.J.: Stability of hovering orbits around small bodies. Adv. Astron. Sci. 102, 855–875 (1999)

    Google Scholar 

  • Spilker T.: Saturn ring observer. Acta. Astron. 52(2–6), 259–265 (2003)

    Article  Google Scholar 

  • Waters T., McInnes C.R.: Periodic orbits above the ecliptic plane in the solar sail restricted 3-body problem. J. Guid. Control Dyn. 30(3), 687–693 (2007)

    Article  Google Scholar 

  • Xu M., Xu S.: Nonlinear dynamical analysis for displaced orbits above a planet. Celest. Mech. Dyn. Astron. 102(4), 327–353 (2008)

    Article  ADS  MATH  Google Scholar 

  • Yashko, G.J., Hastings, D.E.: Analysis of thruster requirements and capabilities for local satellite clusters. In: 10th AIAA/USU Small Satellite Conferene Logan, Utah, Sept 16–19 (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin R. McInnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McInnes, C.R. Displaced non-Keplerian orbits using impulsive thrust. Celest Mech Dyn Astr 110, 199–215 (2011). https://doi.org/10.1007/s10569-011-9351-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9351-5

Keywords

Navigation