Skip to main content
Log in

Non-Keplerian orbits for electric sails

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

An electric sail is capable of guaranteeing the fulfilment of a class of trajectories that would be otherwise unfeasible through conventional propulsion systems. In particular, the aim of this paper is to analyze the electric sail capabilities of generating a class of displaced non-Keplerian orbits, useful for the observation of the Sun’s polar regions. These orbits are characterized through their physical parameters (orbital period and solar distance) and the spacecraft propulsion capabilities. A comparison with a solar sail is made to highlight which of the two systems is more convenient for a given mission scenario. The optimal (minimum time) transfer trajectories towards the displaced orbits are found with an indirect approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baoyin H., Mcinnes C.R.: Solar sail halo orbits at the Sun-Earth artificial L1 point. Celest. Mech. Dyn. Astron. 94(2), 155–171 (2006). doi:10.1007/s10569-005-4626-3

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Brown, C.D.: Spacecraft mission design, pp. 71–73. AIAA Education Series (1992)

  • Bryson A.E., Ho Y.C.: Applied Optimal Control, Chap. 2, pp. 71–89. Hemisphere Publishing Corporation, New York, NY (1975)

    Google Scholar 

  • Hughes G.W., McInnes C.R.: Solar sail hybrid trajectory optimization for non-Keplerian orbit transfers. J. Guid. Control Dyn. 25(3), 602–604 (2002)

    Article  Google Scholar 

  • Janhunen P., Sandroos A.: Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys. 25(3), 755–767 (2007)

    Article  ADS  Google Scholar 

  • Kim M., Hall C.D.: Symmetries in the optimal control of solar sail spacecraft. Celest. Mech. Dyn. Astron. 92(4), 273–293 (2005). doi:10.1007/s10569-004-2530-x

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kirpichnikov S.N., Kirpichnikova E.S., Polyakhova E.N., Shmyrov A.S.: Planar heliocentric roto- translatory motion of a spacecraft with a solar sail of complex shape. Celest. Mech. Dyn. Astron. 63(3–4), 255–269 (2004). doi:10.1007/BF00692290

    ADS  Google Scholar 

  • Koblik V., Polyakhova E., Sokolov L.: Controlled solar sail transfers into near-sun regions combined with planetary gravity-assist flybys. Celest. Mech. Dyn. Astron. 86(1), 59–80 (2003). doi:10.1023/A:1023626917595

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • McInnes C.R.: The existence and stability of families of displacement two-body orbits. Celest. Mech. Dyn. Astron. 67(2), 167–180 (1997). doi:10.1023/A:1008280609889

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • McInnes C.R.: Passive control of displaced solar sail orbits. J. Guid. Control Dyn. 21(6), 975–982 (1998)

    Article  Google Scholar 

  • McInnes C.R.: Solar sailing: technology, dynamics and mission applications. Springer-Praxis series in space science and technology, pp. 175–196. Springer-Verlag, Berlin (1999)

    Google Scholar 

  • McInnes C.R., Brown J.C.: The dynamics of solar sails with a non-point source of radiation pressure. Celest. Mech. Dyn. Astron. 49(3), 249–264 (1990). doi:10.1007/BF00049416

    Article  ADS  Google Scholar 

  • McInnes C.R., Simmons J.F.L.: Solar sail halo orbits. Part I—heliocentric case. J. Spacecr. Rockets 29(4), 466–471 (1992)

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A.A.: Optimal control laws for axially symmetric solar sails. J. Spacecr. Rockets 42(6), 1130–1133 (2005a)

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A.A.: Time-optimal three-dimensional trajectories for solar photon thruster spacecraft. J. Spacecr. Rockets 42(2), 379–381 (2005b)

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A. A.: Compound solar sail with optical properties: models and performance. J. Spacecr. Rockets 43(1), 239–245 (2006)

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A.A.: Optimal heliostationary missions of high-performance sailcraft. Acta Astronaut. 60(8–9), 676–683 (2007). doi:10.1016/j.actaastro.2006.07.018

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A.A., Circi C., Dachwald B.: Refined solar sail force model with mission application. J. Guid. Control Dyn. 30(2), 512–520 (2007). doi:10.2514/1.24779

    Article  Google Scholar 

  • Mengali G., Quarta A.A., Janhunen P.: Considerations of electric sailcraft trajectory design. J. Br. Interplanet. Soc. 61(8), 326–329 (2008a)

    Google Scholar 

  • Mengali G., Quarta A.A., Janhunen P.: Electric sail performance analysis. J. Spacecr. Rockets 45(1), 122–129 (2008b). doi:10.2514/1.31769

    Article  Google Scholar 

  • Racca G.D.: New challenges to trajectory design by the use of electric propulsion and other new means of wandering in the solar system. Celest. Mech. Dyn. Astron. 85(1), 1–24 (2004). doi:10.1023/A:1021787311087

    Article  MathSciNet  ADS  Google Scholar 

  • Stengel R.F.: Stochastic Optimal Control: Theory and Applications, pp. 242–243. Wiley, New York, NY (1986)

    MATH  Google Scholar 

  • Van Der Ha J.C., Modi V.J.: Long-term evaluation of three-dimensional heliocentric solar sail trajectories with arbitrary fixed sail setting. Celest. Mech. Dyn. Astron. 19(2), 113–138 (1979). doi:10.1007/BF01796085

    MATH  Google Scholar 

  • Wenzel K.-P., Marsden R.G., Page D.E., Smith E.J.: The Ulysses mission. Astron. Astrophys. Suppl. Ser. 92(2), 207–219 (1992)

    ADS  Google Scholar 

  • Wie B.: Thrust vector control analysis and design for solar-sail spacecraft. J. Spacecr. Rockets 44(3), 545–557 (2007). doi:10.2514/1.23084

    Article  ADS  Google Scholar 

  • Wright J.L.: Space Sailing, pp. 223–226. Gordon and Breach Science Publisher, Berlin (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Mengali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mengali, G., Quarta, A.A. Non-Keplerian orbits for electric sails. Celest Mech Dyn Astr 105, 179–195 (2009). https://doi.org/10.1007/s10569-009-9200-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9200-y

Keywords

Navigation