Skip to main content
Log in

Genotoxicity of hydroquinone in A549 cells

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Hydroquinone (HQ) is found in natural and anthropogenic sources including food, cosmetics, cigarette smoke, and industrial products. In addition to ingestion and dermal absorption, human exposure to HQ may also occur by inhaling cigarette smoke or polluted air. The adverse effects of HQ on respiratory systems have been studied, but genotoxicity HQ on human lung cells is unclear. The aim of this study was to investigate the cytotoxicity and genotoxicity of HQ in human lung alveolar epithelial cells (A549). We found that HQ induced a dose response in cell growth inhibition and DNA damage which was associated with an increase in oxidative stress. Cytotoxicity results demonstrated that HQ was most toxic after 24 h (LC50 = 33 μM) and less toxic after 1 h exposure (LC50 = 59 μM). Genotoxicity of HQ was measured using the Comet assay, H2AX phosphorylation, and chromosome aberration formation. Results from the comet assay revealed that DNA damage was highest during the earlier hours of exposure (1 and 6 h) and thereafter was reduced. A similar pattern was observed for H2AX phosphorylation suggesting that damage DNA may be repaired in later exposure hours. An increase in chromosomal aberration corresponded with maximal DNA damage which further confirmed the genotoxic effects of HQ. To investigate whether oxidative stress was involved in the cytotoxic and genotoxic effects of HQ, cellular glutathione and 8-Oxo-deoguanisone (8-Oxo-dG) formation were measured. A decrease in the reduced glutathione (GSH) and an increase oxidized glutathione (GSSG) was observed during the early hours of exposure which corresponded with elevated 8-Oxo-dG adducts. Together these results demonstrate that HQ exerts its cytotoxic and genotoxic effects in A549 lung cells, probably through DNA damage via oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreoli C, Rossi S, Leopardi P, Crebelli R. DNA damage by hydroquinone in human white blood cells: analysis by alkaline single-cell gel electrophoresis. Mutat Res. 1999;438:37–45.

    Article  PubMed  CAS  Google Scholar 

  • Balendiran GK, Dabur R, Fraser D. The role of glutathione in cancer. Cell Biochem Funct. 2004;22:343–52.

    Article  PubMed  CAS  Google Scholar 

  • Bertram KM, Baglole CJ, Phipps RP, Libby RT. Molecular regulation of cigarette smoke induced-oxidative stress in human retinal pigment epithelial cells: implications for age-related macular degeneration. Am J Physiol Cell Physiol. 2009;297:C1200–10.

    Article  PubMed  CAS  Google Scholar 

  • Bird MG, Letinski DJ, Nicolich M, Chen M, Schnatter AR, Whitman FT. Influence of toluene co-exposure on the metabolism and genotoxicity of benzene in mice using continuous and intermittent exposures. Chem Biol Interact. 2010;184:233–9.

    Article  PubMed  CAS  Google Scholar 

  • Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ. Role of quinones in toxicology. Chem Res Toxicol. 2000;13:135–60.

    Article  PubMed  CAS  Google Scholar 

  • Castell JV, Donato MT, Gomez-Lechon MJ. Metabolism and bioactivation of toxicants in the lung. The in vitro cellular approach. Exp Toxicol Pathol. 2005;57 Suppl 1:189–204.

    Article  PubMed  CAS  Google Scholar 

  • Cheah NP, Pennings JL, Vermeulen JP, van Schooten FJ, Opperhuizen A. In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro. 2013;27:1072–81.

    Article  PubMed  CAS  Google Scholar 

  • DeCaprio AP. The toxicology of hydroquinone-relevance to occupational and environmental exposure. Crit Rev Toxicol. 1999;29:283–330.

    Article  PubMed  CAS  Google Scholar 

  • Deisinger PJ, Hill TS, English JC. Human exposure to naturally occurring hydroquinone. J Toxicol Env Health. 1996;47:31–46.

    Article  CAS  Google Scholar 

  • Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem. 2007;113:234–58.

    Article  PubMed  CAS  Google Scholar 

  • Galvan N, Lim S, Zmugg S, Smith MT, Zhang L. Depletion of WRN enhances DNA damage in HeLa cells exposed to the benzene metabolite, hydroquinone. Mutat Res. 2008;649:54–61.

    Article  PubMed  CAS  Google Scholar 

  • Gaskell M, McLuckie KI, Farmer PB. Comparison of the repair of DNA damage induced by the benzene metabolites hydroquinone and p-benzoquinone: a role for hydroquinone in benzene genotoxicity. Carcinogenesis. 2005a;26:673–80.

    Article  PubMed  CAS  Google Scholar 

  • Gaskell M, McLuckie KI, Farmer PB. Genotoxicity of the benzene metabolites para-benzoquinone and hydroquinone. Chem-Biol Interact. 2005b;153–154:267–70.

    Article  PubMed  Google Scholar 

  • Gopalakrishna R, Chen ZH, Gundimeda U. Tobacco smoke tumor promoters, catechol and hydroquinone, induce oxidative regulation of protein kinase C and influence invasion and metastasis of lung carcinoma cells. Proc Natl Acad Sci U S A. 1994;91:12233–7.

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW. Determination of Glutathione and Glutathione Disulfide Using Glutathione-Reductase and 2-Vinylpyridine. Anal Biochem. 1980;106:207–12.

    Article  PubMed  CAS  Google Scholar 

  • Gut I, Nedelcheva V, Soucek P, Stopka P, Tichavska B. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity. Environ Health Perspect. 1996;104:1211–8.

    PubMed  CAS  Google Scholar 

  • Hard GC, Whysner J, English JC, Zang E, Williams GM. Relationship of hydroquinone-associated rat renal tumors with spontaneous chronic progressive nephropathy. Toxicol Pathol. 1997;25:132–43.

    Article  PubMed  CAS  Google Scholar 

  • He LF, Yang CPH, Horwitz SB. Mutations in beta-tubulin map to domains involved in regulation of microtubule stability in epothilone-resistant cell lines. Mol Cancer Ther. 2001;1:3–10.

    PubMed  CAS  Google Scholar 

  • Hiraku Y, Kawanishi S. Oxidative DNA damage and apoptosis induced by benzene metabolites. Cancer Res. 1996;56:5172–8.

    PubMed  CAS  Google Scholar 

  • Horita M, Wang DH, Tsutsui K, Sano K, Masuoka N, Kira S. Involvement of oxidative stress in hydroquinone-induced cytotoxicity in catalase-deficient Escherichia coli mutants. Free Radical Res. 2005;39:1035–41.

    Article  CAS  Google Scholar 

  • IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 71 (part two), Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. Lyon: IARC; 1999. p. 691–719.

  • Ishii H et al. Fhit-deficient hematopoietic stem cells survive hydroquinone exposure carrying precancerous changes. Cancer Res. 2008;68:3662–70.

    Article  PubMed  CAS  Google Scholar 

  • Kang KW, Lee SJ, Kim SG. Molecular mechanism of Nrf2 activation by oxidative stress. Antioxid Redox Signal. 2005;7:1664–73.

    Article  PubMed  CAS  Google Scholar 

  • Kari FW, Bucher J, Eustis SL, Haseman JK, Huff JE. Toxicity and carcinogenicity of hydroquinone in F344/N rats and B6C3F1 mice. Food Chem Toxicol. 1992;30:737–47.

    Article  PubMed  CAS  Google Scholar 

  • Kiffe M, Christen P, Arni P. Characterization of cytotoxic and genotoxic effects of different compounds in CHO K5 cells with the comet assay (single-cell gel electrophoresis assay). Mutat Res. 2003;537:151–68.

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Woo HD, Kim BM, Lee YJ, Kang SJ, Cho YH, et al. Risk assessment of hydroquinone: differential responses of cell growth and lethality correlated to hydroquinone concentration. J Toxicol Environ Health A. 2009;72:1272–8.

    Article  PubMed  CAS  Google Scholar 

  • Klein CB, Broday L, Costa M. Assays for Detecting Chromosomal Aberrations, Current protocols in Toxicology. John Wiley & Sons, Inc., New York University School of Medicine. 2001, pp 3.7.1–3.7.16.

  • Kondrova E, Stopka P, Sousek P. Cytochrome P450 destruction by benzene metabolites 1,4-benzoquinone and 1,4-hydroquinone and the formation of hydroxyl radicals in minipig liver microsomes. Toxicol in Vitro. 2007;21:566–75.

    Article  PubMed  CAS  Google Scholar 

  • Lau SS, Kuhlman CL, Bratton SB, Monks TJ. Role of hydroquinone-thiol conjugates in benzene-mediated toxicity. Chem Biol Interact. 2010;184:212–7.

    Article  PubMed  CAS  Google Scholar 

  • Leanderson P, Tagesson C. Cigarette smoke-induced DNA-damage: role of hydroquinone and catechol in the formation of the oxidative DNA-adduct, 8-hydroxydeoxyguanosine. Chem Biol Interact. 1990;75:71–81.

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Lim JY, Lee YG, Shin WC, Chun T, Rhee MH, et al. Hydroquinone, a reactive metabolite of benzene, reduces macrophage-mediated immune responses. Mol Cells. 2007;23:198–206.

    PubMed  CAS  Google Scholar 

  • Levay G, Pongracz K, Bodell WJ. Detection of DNA adducts in HL-60 cells treated with hydroquinone and p-benzoquinone by 32P-postlabeling. Carcinogenesis. 1991;12:1181–6.

    Article  PubMed  CAS  Google Scholar 

  • Levay G, Ross D, Bodell WJ. Peroxidase activation of hydroquinone results in the formation of DNA adducts in HL-60 cells, mouse bone marrow macrophages and human bone marrow. Carcinogenesis. 1993;14:2329–34.

    Article  PubMed  CAS  Google Scholar 

  • Löbrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. GammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 2010;9:662–9.

    Article  PubMed  Google Scholar 

  • Loft S, Vistisen K, Ewertz M, Tjonneland A, Overvad K, Poulsen HE. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis. 1992;13:2241–7.

    Article  PubMed  CAS  Google Scholar 

  • Loft S, Astrup A, Buemann B, Poulsen HE. Oxidative DNA damage correlates with oxygen consumption in humans. FASEB J. 1994;8:534–7.

    PubMed  CAS  Google Scholar 

  • Luo LH, Jiang LP, Geng CY, Cao J, Zhong LF. Hydroquinone-induced genotoxicity and oxidative DNA damage in HepG2 cells. Chem Biol Interact. 2008;173:1–8.

    Article  PubMed  CAS  Google Scholar 

  • MacPhail SH, Banath JP, Yu TY, Chu EHM, Lambur H, Olive PL. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol. 2003;79:351–8.

    Article  PubMed  CAS  Google Scholar 

  • McGregor D. Hydroquinone: an evaluation of the human risks from its carcinogenic and mutagenic properties. Crit Rev Toxicol. 2007;37:887–914.

    Article  PubMed  CAS  Google Scholar 

  • McHale CM, Zhang L, Smith MT. Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis. 2012;33:240–52.

    Article  PubMed  CAS  Google Scholar 

  • Natarajan AT, Palitti F. DNA repair and chromosomal alterations. Mutat Res. 2008;657:3–7.

    Article  PubMed  CAS  Google Scholar 

  • Olumide YM, Akinkugbe AO, Altraide D, Mohammed T, Ahamefule N, Ayanlowo S, Onyekonwu C, Essen N. Complications of chronic use of skin lightening cosmetics. Int J Dermatol. 2008;47:344–53.

    Google Scholar 

  • Peng D, Jiaxing W, Chunhui H, Weiyi P, Xiaomin W. Study on the cytogenetic changes induced by benzene and hydroquinone in human lymphocytes. Hum Exp Toxicol. 2012;31:322–35.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer P, Goedecke W, Obe G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. 2000;15:289–302.

    Article  PubMed  CAS  Google Scholar 

  • Podhorecka M, Skladanowski A, Bozko P. H2AX phosphorylation: its role in dna damage response and cancer therapy. J Nucleic Acis. 2010. doi:10.4061/2010/920161.

    Google Scholar 

  • Pons M, Marin-Castaño ME. Cigarette smoke-related hydroquinone dysregulates MCP-1. VEGF and PEDF expression in retinal pigment epithelium in vitro and in vivo. Plos One. 2011;6:e16722.

    Article  PubMed  CAS  Google Scholar 

  • Richman PG, Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem. 1975;250:1422–6.

    PubMed  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    Article  PubMed  CAS  Google Scholar 

  • Rubio V, Zhang J, Valverde M, Rojas E, Shi ZZ. Essential role of Nrf2 in protection against hydroquinone- and benzoquinone-induced cytotoxicity. Toxicol in Vitro. 2011;25:521–9.

    Article  PubMed  CAS  Google Scholar 

  • Savage JR. Classification and relationships of induced chromosomal structual changes. J Med Genet. 1976;13:103–22.

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Patil JA, Gramajo AL, Seigel GM, Kuppermann BD, Kenney CM. Effects of hydroquinone on retinal and vascular cells in vitro. Indian J Ophthalmol. 2012;60:189–93.

    Article  PubMed  Google Scholar 

  • Shibata MA, Hirose M, Tanaka H, Asakawa E, Shirai T, Ito N. Induction of renal cell tumors in rats and mice, and enhancement of hepatocellular tumor development in mice after long-term hydroquinone treatment. Jpn J Cancer Res. 1991;82:1211–9.

    Article  PubMed  CAS  Google Scholar 

  • Shimada ALB, Lino-dos-Santos-Franco A, Bolonheis SM, Nakasato A, Damazo AS, Tavares-de-Lima W, et al. In vivo hydroquinone exposure causes tracheal hyperresponsiveness due to TNF secretion by epithelial cells. Toxicol Lett. 2012;211:10–7.

    Article  PubMed  CAS  Google Scholar 

  • Silva MDC, Gaspar J, Silva ID, Leao D, Rueff J. Mechanisms of induction of chromosomal aberrations by hydroquinone in V79 cells. Mutagenesis. 2003;18:491–6.

    Article  Google Scholar 

  • Smith MT. Benzene, NQO1, and genetic susceptibility to cancer. Proc Natl Acad Sci U S A. 1999;96:7624–6.

    Article  PubMed  CAS  Google Scholar 

  • Smith MT, Yager JW, Steinmetz KL, Eastmond DA. Peroxidase-dependent metabolism of benzene’s phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ Health Perspect. 1989;82:23–9.

    Article  PubMed  CAS  Google Scholar 

  • Snyder R. Benzene and leukemia. Crit Rev Toxicol. 2002;32:155–210.

    Google Scholar 

  • Snyder CA, Sellakumar AR, James DJ, Albert RE. The carcinogenicity of discontinuous inhaled benzene exposures in CD-1 and C57Bl/6 mice. Arch Toxicol. 1988;62:331–5.

    Article  PubMed  CAS  Google Scholar 

  • Sognier MA, Hittelman WN. Mitomycin-induced chromatid breaks in HeLa cells: a consequence of incomplete DNA replication. Cancer Res. 1986;46:4032–40.

    PubMed  CAS  Google Scholar 

  • Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27:502–22.

    Article  PubMed  CAS  Google Scholar 

  • Toraason M et al. Oxidative stress and DNA damage in Fischer rats following acute exposure to trichloroethylene or perchloroethylene. Toxicology. 1999;138:43–53.

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui T, Hayashi N, Maizumi H, Huff J, Barrett JC. Benzene-, catechol-, hydroquinone- and phenol-induced cell transformation, gene mutations, chromosome aberrations, aneuploidy, sister chromatid exchanges and unscheduled DNA synthesis in Syrian hamster embryo cells. Mutat Res. 1997;373:113–23.

    Article  PubMed  CAS  Google Scholar 

  • Wan J, Winn LM. Benzene’s metabolites alter c-MYB activity via reactive oxygen species in HD3 cells. Toxicol Appl Pharm. 2007;222:180–9.

    Article  CAS  Google Scholar 

  • Watters GP, Smart DJ, Harvey JS, Austin CA. H2AX phosphorylation as a genotoxicity endpoint. Mutat Res. 2009;679:50–8.

    Article  PubMed  CAS  Google Scholar 

  • Wetmore BA et al. Genotoxicity of intermittent co-exposure to benzene and toluene in male CD-1 mice. Chem Biol Interact. 2008;173:166–78.

    Article  PubMed  CAS  Google Scholar 

  • Winn LM. Homologous recombination initiated by benzene metabolites: a potential role of oxidative stress. Toxicol Sci. 2003;72:143–9.

    Article  PubMed  CAS  Google Scholar 

  • Yin SN, Hayes RB, Linet MS, Li GL, Dosemeci M, Travis LB, Zhang ZN, Li DG, Chow WH, Wacholer S, Blot WJ. An expanded cohort study of cancer among benzeneexposed workers in China. Benzene Study Group. Environ Health Perspect. 1996;104(suppl 6):1339–1341.

    Google Scholar 

Download references

Acknowledgment

The project was funded by CRC CARE (grant no. 1-3-03-07/08). Entox is a partnership between Queensland Health and the University of Queensland. Technical advice and access to Metafer MSearch instrument for chromosome aberration assay provided by Mr. Ross Brookwell and Ben Lundie of Sullivan and Nicolaides Pathology, Brisbane, are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack C. Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, C., Arthur, D., Liu, F. et al. Genotoxicity of hydroquinone in A549 cells. Cell Biol Toxicol 29, 213–227 (2013). https://doi.org/10.1007/s10565-013-9247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-013-9247-0

Keywords

Navigation