Skip to main content
Log in

A novel amidase from Brevibacterium epidermidis ZJB-07021: gene cloning, refolding and application in butyrylhydroxamic acid synthesis

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A novel amidase gene (bami) was cloned from Brevibacterium epidermidis ZJB-07021 by combination of degenerate PCR and high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). The deduced amino acid sequence showed low identity (≤55 %) with other reported amidases. The bami gene was overexpressed in Escherichia coli, and the resultant inclusion bodies were refolded and purified to homogeneity with a recovery of 22.6 %. Bami exhibited a broad substrate spectrum towards aliphatic, aromatic and heterocyclic amides, and showed the highest acyl transfer activity towards butyramide with specific activity of 1331.0 ± 24.0 U mg−1. Kinetic analysis demonstrated that purified Bami exhibited high catalytic efficiency (414.9 mM−1 s−1) for acyl transfer of butyramide, with turnover number (K cat) of 3569.0 s−1. Key parameters including pH, substrate/co-substrate concentration, reaction temperature and catalyst loading were investigated and the Bami showed maximum acyl transfer activity at 50 °C, pH 7.5. Enzymatic catalysis of 200 mM butyramide with 15 μg mL−1 purified Bami was completed in 15 min with a BHA yield of 88.1 % under optimized conditions. The results demonstrated the great potential of Bami for the production of a variety of hydroxamic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agarwal S, Choudhury B (2014) Presence of multiple acyltransferases with diverse substrate specificity in Bacillus smithii strain IITR6b2 and characterization of unique acyltransferase with nicotinamide. J Mol Catal B Enzym 107:64–72. doi:10.1016/j.molcatb.2014.05.017

    Article  CAS  Google Scholar 

  2. Agarwal S, Gupta M, Choudhury B (2013) Bioprocess development for nicotinic acid hydroxamate synthesis by acyltransferase activity of Bacillus smithii strain IITR6b2. J Ind Microbiol Biotechnol 40:937–946. doi:10.1007/s10295-013-1299-x

    Article  CAS  PubMed  Google Scholar 

  3. Ando W, Tsumaki H (1983) A facile preparation of aliphatic hydroxamic acid from N,N,O-tris (trimethylsilyl) hydroxylamine and acid chloride. Synthetic Commun 13:1053–1056. doi:10.1080/00397918308082726

    Article  CAS  Google Scholar 

  4. Bhatia RK, Bhatia SK, Kumar V, Bhalla TC (2015) Bi-substrate kinetic analysis of acyl transfer activity of purified amidase from Pseudomonas putida BR-1. Catal Lett 145:1033–1040. doi:10.1007/s10562-014-1467-2

    Article  CAS  Google Scholar 

  5. Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2013) Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674. J Ind Microbiol Biotechnol 40:21–27. doi:10.1007/s10295-012-1206-x

    Article  CAS  PubMed  Google Scholar 

  6. Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2014) Biotransformation of nicotinamide to nicotinyl hydroxamic acid at bench scale by amidase acyl transfer activity of Pseudomonas putida BR-1. J Mol Catal B Enzym 108:89–95. doi:10.1016/j.molcatb.2014.07.001

    Article  CAS  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  8. Brammar WJ, Clarke PH (1964) Induction and repression of Pseudomonas aeruginosa amidase. J Gen Microbiol 37:307–319. doi:10.1099/00221287-37-3-307

    Article  CAS  PubMed  Google Scholar 

  9. Cao H, Jung M, Stamatoyannopoulos G (2005) Hydroxamide derivatives of short-chain fatty acid have erythropoietic activity and induce γ gene expression in vivo. Exp Hematol 33:1443–1449. doi:10.1016/j.exphem.2005.08.007

    Article  CAS  PubMed  Google Scholar 

  10. Chebrou H, Bigey F, Arnaud A, Galzy P (1996) Study of the amidase signature group. BBA-Protein Struct Mol Enzymol 1298:285–293. doi:10.1016/S0167-4838(96)00145-8

    Article  CAS  Google Scholar 

  11. Cheong TK, Oriel PJ (2000) Cloning of a wide-spectrum amidase from Bacillus stearothermophilus BR388 in Escherichia coli and marked enhancement of amidase expression using directed evolution. Enzyme Microb Technol 26:152–158. doi:10.1016/S0141-0229(99)00150-7

    Article  CAS  PubMed  Google Scholar 

  12. Egorova K, Trauthwein H, Verseck S, Antranikian G (2004) Purification and properties of an enantioselective and thermoactive amidase from the thermophilic actinomycete Pseudonocardia thermophila. Appl Microbiol Biotechnol 65:38–45. doi:10.1007/s00253-004-1607-5

    Article  CAS  PubMed  Google Scholar 

  13. Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ (2010) Short-Chain HDAC inhibitors differentially affect vertebrate development and neuronal chromatin. ACS Med Chem Lett 2:39–42. doi:10.1021/ml1001954

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fournand D, Arnaud A (2001) Aliphatic and enantioselective amidases: from hydrolysis to acyl transfer activity. J Appl Microbiol 91:381–393. doi:10.1046/j.1365-2672.2001.01378.x

    Article  CAS  PubMed  Google Scholar 

  15. Fournand D, Arnaud A, Galzy P (1998) Study of the acyl transfer activity of a recombinant amidase overproduced in an Escherichia coli strain. Application for short-chain hydroxamic acid and acid hydrazide synthesis. J Mol Catal B Enzym 4:77–90. doi:10.1016/S1381-1177(97)00024-6

    Article  CAS  Google Scholar 

  16. Fournand D, Bigey F, Arnaud A (1998) Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids. Appl Environ Microbiol 64:2844–2852

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao WY, Mitsuya H, Driscoll JS, Johns DG (1995) Enhancement by hydroxyurea of the anti-human immunodeficiency virus type 1 potency of 2-β-fluoro-2′,3′-dideoxyadenosine in peripheral blood mononuclear cells. Biochem Pharmacol 50:274–276. doi:10.1016/0006-2952(95)00106-A

    Article  CAS  PubMed  Google Scholar 

  18. Guo FM, Wu JP, Yang LR, Xu G (2015) Soluble and functional expression of a recombinant enantioselective amidase from Klebsiella oxytoca KCTC 1686 in Escherichia coli and its biochemical characterisation. Process Biochem 50:1264–1271. doi:10.1016/j.procbio.2015.05.005

    Article  CAS  Google Scholar 

  19. Hayashi T, Yamamoto K, Matsuo A, Otsubo K, Muramatsu S, Matsuda A, Komatsu KI (1997) Characterization and cloning of an enantioselective amidase from Comamonas acidovorans KPO-2771-4. J Ferment Bioeng 83:139–145. doi:10.1016/S0922-338X(97)83572-6

    Article  CAS  Google Scholar 

  20. Holmes LB (1996) Hydroxamic acid: a potential human teratogen that could be recommended to treat ureaplasma. Teratology 53:227–229. doi:10.1002/(SICI)1096-9926(199604)53:4<227::AID-TERA4>3.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  21. Hongpattarakere T, Komeda H, Asano Y (2005) Purification, characterization, gene cloning and nucleotide sequencing of D-stereospecific amino acid amidase from soil bacterium: Delftia acidovorans. J Ind Microbiol Biotechnol 32:567–576. doi:10.1007/s10295-005-0246-x

    Article  CAS  PubMed  Google Scholar 

  22. Jin SJ, Zheng RC, Zheng YG, Shen YC (2008) R-enantioselective hydrolysis of 2,2-dimethylcyclopropanecarboxamide by amidase from a newly isolated strain Brevibacterium epidermidis ZJB-07021. J Appl Microbiol 105:1150–1157. doi:10.1111/j.1365-2672.2008.03841.x

    Article  CAS  PubMed  Google Scholar 

  23. Komeda H, Asano Y (2000) Gene cloning, nucleotide sequencing, and purification and characterization of the D-stereospecific amino-acid amidase from Ochrobactrum anthropi SV3. Eur J Biochem 267:2028–2035. doi:10.1046/j.1432-1327.2000.01208.x

    Article  CAS  PubMed  Google Scholar 

  24. Krieg L, Ansorge-Schumacher MB, Kula MR (2002) Screening for amidases: isolation and characterization of a novel D-amidase from Variovorax paradoxus. Adv Synth Catal 344:965–973. doi:10.1002/1615-4169(200210)344:9<965:AID-ADSC965>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  25. Krieg L, Slusarczyk H, Verseck S, Kula MR (2005) Identification and characterization of a novel D-amidase gene from Variovorax paradoxus and its expression in Escherichia coli. Appl Microbiol Biotechnol 66:542–550. doi:10.1007/s00253-004-1716-1

    Article  CAS  PubMed  Google Scholar 

  26. Liu YG, Chen YL (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–656. doi:10.2144/000112601

    Article  CAS  PubMed  Google Scholar 

  27. Maestracci M, Thiery A, Arnaud A, Galzy P (1986) A study of the mechanism of the reactions catalyzed by the amidase Brevibacterium sp. R312. Agric Biol Chem 50:2237–2241. doi:10.1080/00021369.1986.10867736

    CAS  Google Scholar 

  28. Mayaux JF, Cerebelaud E, Soubrier F, Faucher D, Petre D (1990) Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase. J Bacteriol 172:6764–6773

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nahálka J, Mislovičová D, Kavcová H (2009) Targeting lectin activity into inclusion bodies for the characterisation of glycoproteins. Mol BioSyst 5:819–821. doi:10.1039/B900526A

    Article  PubMed  Google Scholar 

  30. Nojiri M, Taoka N, Yasohara Y (2014) Characterization of an enantioselective amidase from Cupriavidus sp. KNK-J915 (FERM BP-10739) useful for enzymatic resolution of racemic 3-piperidinecarboxamide. J Mol Catal B Enzym 109:136–142. doi:10.1016/j.molcatb.2014.08.016

    Article  CAS  Google Scholar 

  31. Pandey D, Singh R, Chand D (2011) An improved bioprocess for synthesis of acetohydroxamic acid using DTT (dithiothreitol) treated resting cells of Bacillus sp. APB-6. Bioresour Technol 102:6579–6586. doi:10.1016/j.biortech.2011.03.071

    Article  CAS  PubMed  Google Scholar 

  32. Park HJ, Uhm KN, Kim HK (2008) R-stereoselective amidase from Rhodococcus erythropolis No. 7 acting on 4-chloro-3-hydroxybutyramide. J Microbiol Biotechnol 18:552–559

    CAS  PubMed  Google Scholar 

  33. Ravi Kant B, Shashi Kant B, Praveen Kumar M, Tek Chand B (2013) Production and characterization of acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674 for synthesis of hydroxamic acids. J Microb Biochem Technol 5:001–005. doi:10.4172/1948-5948.1000090

    Article  Google Scholar 

  34. Ruan LT, Zheng RC, Zheng YG, Shen YC (2016) Purification and characterization of R-stereospecific amidase from Brevibacterium epidermidis ZJB-07021. Int J Biol Macromol 86:893–900. doi:10.1016/j.ijbiomac.2016.02.020

    Article  CAS  PubMed  Google Scholar 

  35. Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264. doi:10.1007/s11010-007-9603-6

    Article  CAS  PubMed  Google Scholar 

  36. Sharma M, Sharma NN, Bhalla TC (2012) Biotransformation of acetamide to acetohydroxamic acid at bench scale using acyl transferase activity of amidase of Geobacillus pallidus BTP-5x MTCC 9225. Indian J Microbiol 52:76–82. doi:10.1007/s12088-011-0211-5

    Article  CAS  PubMed  Google Scholar 

  37. Shen W, Chen H, Jia K, Ni J, Yan X, Li S (2012) Cloning and characterization of a novel amidase from Paracoccus sp. M-1, showing aryl acylamidase and acyl transferase activities. Appl Microbiol Biotechnol 94:1007–1018. doi:10.1007/s00253-011-3704-6

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki Y, Ohta H (2006) Identification of a thermostable and enantioselective amidase from the thermoacidophilic archaeon Sulfolobus tokodaii strain 7. Protein Expr Purif 45:368–373. doi:10.1016/j.pep.2005.06.017

    Article  CAS  PubMed  Google Scholar 

  39. Trott S, Bürger S, Calaminus C, Stolz A (2002) Cloning and heterologous expression of an enantioselective amidase from Rhodococcus erythropolis strain MP50. Appl Environ Microbiol 68:3279–3286. doi:10.1128/aem.68.7.3279-3286.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vejvoda V, Martínková L, Veselá AB, Kaplan O, Lutz-Wahl S, Fischer L, Uhnáková B (2011) Biotransformation of nitriles to hydroxamic acids via a nitrile hydratase-amidase cascade reaction. J Mol Catal B Enzym 71:51–55. doi:10.1016/j.molcatb.2011.03.008

    Article  CAS  Google Scholar 

  41. Wu ZM, Zheng RC, Zheng YG (2016) Exploitation and characterization of three versatile amidase super family members from Delftia tsuruhatensis ZJB-05174. Enzym Microb Technol 86:93–102. doi:10.1016/j.enzmictec.2016.02.002

    Article  CAS  Google Scholar 

  42. Xue Z, Chao Y, Wang D, Wang M, Qian S (2011) Overexpression of a recombinant amidase in a complex auto-inducing culture: purification, biochemical characterization, and regio-and stereoselectivity. J Ind Microbiol Biotechnol 38:1931–1938. doi:10.1007/s10295-011-0979-7

    Article  CAS  PubMed  Google Scholar 

  43. Zheng RC, Wang YS, Liu ZQ, Xing LY, Zheng YG, Shen YC (2007) Isolation and characterization of Delftia tsuruhatensis ZJB-05174, capable of R-enantioselective degradation of 2,2-dimethylcyclopropanecarboxamide. Res Microbiol 158:258–264. doi:10.1016/j.resmic.2006.12.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (No. 21202150), National Science Foundation of Zhejiang (Y4080334, LY13B060004) and National High Technology Research and Development Program of China (No. 2012AA022201B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, LT., Zheng, RC. & Zheng, YG. A novel amidase from Brevibacterium epidermidis ZJB-07021: gene cloning, refolding and application in butyrylhydroxamic acid synthesis. J Ind Microbiol Biotechnol 43, 1071–1083 (2016). https://doi.org/10.1007/s10295-016-1786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1786-y

Keywords

Navigation