Skip to main content
Log in

A Novel Thermal Stable Carbonyl Reductase from Bacillus cereus by Gene Mining as Biocatalyst for β-Carbonyl Ester Asymmetric Reduction Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Carbonyl reductase, as biocatalyst, is very important to chiral alcohols production through asymmetric reduction of carbonyl compound. A novel thermal stable carbonyl reductase from Bacillus cereus (BcCR) dependant on NADPH was obtained through a new genome mining strategy proposed in this work. By analyzing its amino acid sequence and structure, the BcCR should be a thermal stability and wide pH tolerance carbonyl reductase. Its gene was cloned by PCR with B. cereus genomic DNA as template. Its heterologous expression system, E. coli BL21 (DE3) plysS/pET28a-bccr, was constructed, and BcCR was successfully expressed. Enzymatic properties show that at 57.5 °C and pH 7.0 it can reach maximum reaction rate. Its Km and Vmax to ethyl 4-chloroacetoacetate is 1.85 mmol/L and 0.22 µmol/(min·mgprotein), respectively. It can catalyze the asymmetric reduction of the β-carbonyl compound, such as ethyl 4-chloroacetoacetate to ethyl S-4-chloro-3-hydroxybutyrate. This paper proposes a practical method for discovery of new carbonyl reductases, and provides a novel enzyme as biocatalyst for asymmetric reduction of β-carbonyl compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang Z-H, Luo L, Chang X, Zhou W, Chen G-H, Zhao Y, Wang Y-J (2012) J Ind Microbiol Biotechnol 39:835–841

    Article  CAS  PubMed  Google Scholar 

  2. Xu GC, Yu HL, Shang YP, Xu JH (2015) RSC Adv 46:22703–22711

    Article  CAS  Google Scholar 

  3. Luo W, Deng XX, Huo J, Ruan T, Gong ZW, Yan JB, Yang Z-H, Quan C, Cui ZF (2018) Catal Lett 148:1714–1722

    Article  CAS  Google Scholar 

  4. Yang Z-H, Zeng R, Yang G, Wang Y, Li LZ, Lv ZS, Yao M, Lai B (2008) J Ind Microbiol Biotechnol 35:1047–1051

    Article  CAS  PubMed  Google Scholar 

  5. Wang YJ, Chen XP, Shen W, Liu ZQ, Zheng YG (2017) Biochem Eng J 128:54–62

    Article  CAS  Google Scholar 

  6. Penning TM (2015) Chem-Biol Interact 234:236–246

    Article  CAS  PubMed  Google Scholar 

  7. Guo CX, Tang MH, Ni Y (2016) J Mol Catal B: Enzym 123:67–72

    Article  CAS  Google Scholar 

  8. Wang YJ, Ying BB, Shen W, Zheng RC, Zheng YG (2017) Enzyme Microb Technol 107:32–40

    Article  CAS  PubMed  Google Scholar 

  9. Zhang YP, Wang HL, Chen LF, Wu K, Xie JL, Wei DZ (2016) J Mol Catal B: Enzym 134:51–60

    Article  CAS  Google Scholar 

  10. Aggarwal N, Ananthathamula R, Kumar KV, Doble M, Chadha A (2018) Mol Catal 460:40–45

    Article  CAS  Google Scholar 

  11. Ning CX, Su EZ, Wei DZ (2014) Arch Biochem Biophys 564:219–228

    Article  CAS  PubMed  Google Scholar 

  12. He YC, Zhang DP, Tao ZC, Zhang X, Yang ZX (2014) Bioresour Technol 172:342–348

    Article  CAS  PubMed  Google Scholar 

  13. Chen R, Liu X, Lin J, Wei D (2014) J Agric Chem Soc Japan 78:1350–1356

    CAS  Google Scholar 

  14. Guo R, Nie Y, Mu XQ, Xu Y, Xiao R (2014) J Mol Catal B: Enzym 105:66–73

    Article  CAS  Google Scholar 

  15. Zaparucha A, de Berardinis V, Vaxelaire-Vergne C (2018) In: Williams G, Hall M (eds) Modern biocatalysis: advances towards synthetic biological systems. Royal Society of Chemistry, Cambridge

    Google Scholar 

  16. Yu SZ, Li HX, Lu Y, Zheng GJ (2017) Appl Biochem Biotechnol 184:1319–1331

    Article  CAS  PubMed  Google Scholar 

  17. Yang Z-H, Ruan T, Luo W, Wu Y, Zuo ZY, Hou YL, Li LL (2018) Chinese patent 201810218384.2

  18. Wilson K (2001) Curr Protoc Mol Biol 56:241–245

    Article  Google Scholar 

  19. Cheng Y, Wei H, Sun R, Tian Z, Zheng X (2016) Anal Biochem 494:37–39

    Article  CAS  PubMed  Google Scholar 

  20. Kavanagh KL, Jornvall H, Persson B, Oppermann U (2008) Cell Mol Life Sci 65:3895–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fukuda Y, Sakuraba H, Araki T, Ohshima T, Yoneda K (2016) Enzyme Microb Technol 91:17–25

    Article  CAS  PubMed  Google Scholar 

  22. Wang Q, Shen L, Ye T, Cao D, Chen R, Pei X, Xie T, Li Y, Gong W, Yin X (2012) Bioresour Technol 123:690–694

    Article  CAS  PubMed  Google Scholar 

  23. Wang LJ, Li CX, Ni Y, Zhang J, Liu X, Xu JH (2011) Bioresour Technol 102:7023–7028

    Article  CAS  PubMed  Google Scholar 

  24. Huang L, Xu JH, Yu HL (2015) J Biotechnol 203:54–61

    Article  CAS  PubMed  Google Scholar 

  25. Cao H, Mi L, Ye Q, Zang G, Yan M, Wang Y, Zhang Y, Li X, Xu L, Xiong J, Ouyang P, Ying H (2011) Bioresour Technol 102:1733–1739

    Article  CAS  PubMed  Google Scholar 

  26. Zhao FJ, Pei XQ, Ren ZQ, Wu Z-L (2016) Appl Microbiol Biotechnol 100:3567–3575

    Article  CAS  PubMed  Google Scholar 

  27. Wei P, Gao JX, Zheng GW, Wu H, Zong MH, Lou WY (2016) J Biotechnol 230:54–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the financial supports for this research by the National Natural Science Foundation of China (Grant No. 21376184), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (State Education Ministry), Foundation from the Educational Commission of Hubei Province of China (Grant No. D20121108), the Ministry of Science and Technology of China (2017YFF0205803), and the National Institute of Metrology of China (21-AKY1615).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Hua Yang or Can Quan.

Ethics declarations

Conflict of interest Statement

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3147 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, YL., Ruan, T., Hou, HS. et al. A Novel Thermal Stable Carbonyl Reductase from Bacillus cereus by Gene Mining as Biocatalyst for β-Carbonyl Ester Asymmetric Reduction Reaction. Catal Lett 149, 610–618 (2019). https://doi.org/10.1007/s10562-018-2645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2645-4

Keywords

Navigation