Skip to main content
Log in

Strengthening NADPH Regeneration for Improving Photo-biocatalytic Ketones Asymmetric Reduction Reaction by Synechocystis Through Overexpression of FNR

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Microalgae are excellent biocatalyst candidates for photo-biocatalytic-asymmetric reduction of prochiral ketones to produce enantiomer alcohols. In the biocatalysis asymmetric reduction of carbonyl group process, the cofactor, NADPH, plays a key role. So the current study focused on the effect of NADPH availability on the reduction. Photosynthesis is a main pathway for NADPH regeneration in microalgae, and the ferredoxin-NADP+ oxidoreductase (FNR) is the key enzyme in this process. In this work, we constructed an engineered cyanobacterium Synechocystis sp. PCC6803::Ω-PpetE-petH to overexpress FNR gene petH to strengthen NADPH regeneration. The results show that the intracellular NADPH content was increased 80.8% compared to the wild type. Applying the Synechocystis sp. PCC6803::Ω-PpetE-petH to catalyze the model asymmetric reduction reaction (reduction of acetophenone to S-phenylethanol), the yield was improved 61.2% compared to the wild-type. This work makes the microalgal biocatalysis asymmetric reduction process become more preponderant via providing a new route to enhance the regeneration of cofactor NADPH.

Graphical Abstract

Putative metabolic process of nicotinamide adenine dinucleotide phosphate (NADPH) regeneration and the photo-biocatalytic-asymmetric reduction reaction of prochiral ketones in microalgal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shimoda K, Kubota N, Hamada H, Kaji M, Hirata T (2004) Tetrahedron Asymmetr 15:1677–1679

    Article  CAS  Google Scholar 

  2. Anemaet IG, Martijn B, Hellingwerf KJ (2010) Mar Biotechnol 12:619–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shi S, Vallerodríguez JO, Siewers V, Nielsen J (2015) Biotechnol J 6:277–285

    Article  CAS  Google Scholar 

  4. Yamanaka R, Nakamura K, Murakami A (2011) AMB Express 1:1–8

    Article  CAS  Google Scholar 

  5. Nakamura K, Yamanaka R (2002) Chem Commun 16:1782–1783

    Article  CAS  Google Scholar 

  6. Havel J, Weuster-Botz D (2007) Appl Microbiol Biotechnol 75:1031–1037

    Article  CAS  PubMed  Google Scholar 

  7. Yang Z-H, Luo L, Chang X, Zhou W, Chen G-H, Zhao Y, Wang Y-J (2012) J Ind Microbiol Biotechnol 39:835–841

    Article  CAS  PubMed  Google Scholar 

  8. Luo W, Deng X-X, Gong Z-W, Yang Z-H (2016) Asia-Pac J Chem Eng 11:533–538

    Article  CAS  Google Scholar 

  9. Spaans SK, Weusthuis RA, John VDO, Kengen SW (2015) Front Microbiol 6:742

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li W, Wu H, Li M, San KY (2017) Biotechnol. Bioeng 115:444–452

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, San KY, Bennett GN (2013) Curr Opin Biotechnol 24:994–999

    Google Scholar 

  12. Yang T, Man Z, Rao Z, Xu M, Zhang X, Xu Z (2014) J Ind Microbiol Biotechnol 41:1743–1752

    Article  CAS  PubMed  Google Scholar 

  13. Li H-D, Sun Z-H, Ni Y (2013) Chem Res Chin Univ 29:1140–1148

    Google Scholar 

  14. Cai P, An M, Xu L, Xu S, Hao N, Li Y, Guo K, Yan M (2012) Biotechnol Lett 34:2223–2227

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y-J, Shen W, Luo X, Liu Z-Q, Zheng Y-G (2017) Biotechnol Prog 33:1235–1242

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y-J, Ying B-B, Chen M, Shen W, Liu Z-Q, Zheng Y-G (2017) World J Microbiol Biotechnol 33:144

    Article  CAS  PubMed  Google Scholar 

  17. Matsuda T, Yamagishi Y, Koguchi S, Iwai N, Kitazume T (2006) Tetrahedron Lett 37:4619–4622

    Article  CAS  Google Scholar 

  18. Zhu D, Yang Y, Hua L (2006) J Org Chem 71:4202–4205

    Article  CAS  PubMed  Google Scholar 

  19. Pschorn R, Ruhle W, Wild A (1998) Photosynth Res 17:217–229

    Article  Google Scholar 

  20. Arakaki AK, Ceccarelli EA, Carrillo N (1997) FASEB J 11:133–140

    Article  Google Scholar 

  21. Medina M, Luquita A, Tejero J, Hermoso J, Mayoral T, Sanzaparicio J, Grever K, Gomezmoreno C (2001) J Biol Chem 276:11902–11912

    Article  Google Scholar 

  22. Thor JV, Hellingwerf KJ, Matthijs HCP (1998) Plant Mol Biol 36:353–363

    Google Scholar 

  23. Gao H, Tang Q, Xu X-D (2007) Acta Hydrobiol Sin 31:240–244

    Google Scholar 

  24. Li S-S, Yong J-R, Qi Y-L, Zhang Y, Zhao L, Xia S-L, Li D, Wang H-L, Bao Q-Y, Li H-Z (2011) Hereditas 33:1134–1140

    Article  CAS  PubMed  Google Scholar 

  25. Grigorieva G, Shestakov S (1982) FEMS Microbiol Lett 13:367–370

    Article  CAS  Google Scholar 

  26. Williams J (1998) Methods Enzymol 167:766–778

    Google Scholar 

  27. Kuchmina E, Wallner T, Kryazhov S, Zinchenko VV, Wilde A (2012) J Biotechnol 162:75–80

    Article  CAS  PubMed  Google Scholar 

  28. Zhang L, Mcspadden B, Pakrasi HB, Whitmarsh J (1992) J Biol Chem 267:19054–19059

    CAS  PubMed  Google Scholar 

  29. Ghassemian M, Wong B, Ferreira F, Markley JL, Straus NA (1994) Microbiology 140:1151–1159

    Article  CAS  PubMed  Google Scholar 

  30. Tejero J, Martínez-Julvez M, Mayoral T, Luquita A, Sanz-Aparicio J, Hermoso JA, Hurley JK, Tollin G, Gomez-Moreno C, Medina M (2003) J Biol Chem 278(49):49203–49214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was financed by the National Natural Science Foundation of China (Grant No. 21376184), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (State Education Ministry), Foundation from Educational Commission of Hubei Province of China (Grant No. D20121108), the Ministry of Science and Technology of China (2017YFF0205803), and the National Institute of Metrology of China (21-AKY1615), and Science and Technology Innovation Special Major Project of Hubei Province (No. 2017ACA179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Hua Yang.

Additional information

Wei Luo and Xin-Xing Deng have contributed equally to this work and should be considered as co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 380 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Deng, XX., Huo, J. et al. Strengthening NADPH Regeneration for Improving Photo-biocatalytic Ketones Asymmetric Reduction Reaction by Synechocystis Through Overexpression of FNR. Catal Lett 148, 1714–1722 (2018). https://doi.org/10.1007/s10562-018-2367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2367-7

Keywords

Navigation