Skip to main content
Log in

Production of chiral alcohols from prochiral ketones by microalgal photo-biocatalytic asymmetric reduction reaction

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Microalgal photo-biocatalysis is a green technique for asymmetric synthesis. Asymmetric reduction of nonnatural prochiral ketones to produce chiral alcohols by microalgal photo-biocatalysis was studied in this work. Acetophenone (ACP) and ethyl acetoacetate (EAA) were chosen as model substrates for aromatic ketones and β-ketoesters, respectively. Two prokaryotic cyanophyta and two eukaryotic chlorophyta were selected as photo-biocatalysts. The results proved that nonnatural prochiral ketones can be reduced by microalgal photo-biocatalysis with high enantioselectivity. Illumination is indispensable to the photo-biocatalysis. For aromatic ketone, cyanophyta are eligible biocatalysts. For ACP asymmetric reduction reaction, about 45% yield and 97% e.e. can be achieved by the photo-biocatalysis reaction with Spirulina platensis as biocatalyst. On the contrary, chlorophyta are efficient biocatalysts for β-ketoester asymmetric reduction reaction among the four tested algae. For EAA asymmetric reduction reaction, about 70% yield and 90% e.e. can be achieved with Scenedesmus obliquus as biocatalyst. The microalgae used in this study outperformed other characterized biocatalysts such as microbial and plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aiba S, Ogawa T (1977) Assessment of growth yield of a blue-green alga: Spirulina platensis, in axenic and continuous culture. J Gen Microbiol 102:179–182

    Google Scholar 

  2. Anemaet IG, Bekker M, Hellingwerf KJ (2010) Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production. Mar Biotechnol 12:619–629

    Article  PubMed  CAS  Google Scholar 

  3. Carballeira JD, Quezada MA, Hoyos P, Simeó Y, Hernaiz MJ, Alcantara AR, Sinisterra JV (2009) Microbial cells as catalysts for stereoselective red-ox reactions. Biotechnol Adv 27:686–714

    Article  PubMed  CAS  Google Scholar 

  4. Chang X, Yang Z, Zeng R, Yang G, Yan J (2010) Production of chiral aromatic alcohol by asymmetric reduction with vegetable catalyst. Chin J Chem Eng 18:1029–1033

    Article  CAS  Google Scholar 

  5. Chartrain M, Greasham R, Moore J, Reider P, Robinson D, Buckland B (2001) Asymmetric bioreductions: application to the synthesis of pharmaceuticals. J Mol Catal B Enzym 11:503–512

    Article  CAS  Google Scholar 

  6. Cordell GA, Lemos TL, Monte FJ, de Mattos MC (2007) Vegetables as chemical reagents. Nat Prod 70:478–492

    Article  CAS  Google Scholar 

  7. Havel J, Weuster-Botz D (2007) Cofactor regeneration in phototrophic cyanobacteria applied for asymmetric reduction of ketones. Appl Microbiol Biotechnol 75:1031–1037

    Article  PubMed  CAS  Google Scholar 

  8. He J-Y, Zhou L-M, Wang P, Zu L (2009) Microbial reduction of ethyl acetoacetate to ethyl (R)-3-hydroxybutyrate in an ionic liquid containing system. Process Biochem 44:316–321

    Article  CAS  Google Scholar 

  9. Hutt AJ, Tan SC (1996) Drug chirality and its clinical significance. Drugs 52:1–12

    Article  PubMed  CAS  Google Scholar 

  10. Itoh K, Sakamaki H, Nakamura K, Horiuchi CA (2005) Biocatalytic asymmetric reduction of 3-acetylisoxazoles. Tetrahedron Asymmetr 16:1403–1408

    Article  CAS  Google Scholar 

  11. Kafarski P, Lejczak B (2004) Application of bacteria and fungi as biocatalysts for the preparation of optically active hydroxyphosphonates. J Mol Catal B Enzym 29:99–104

    Article  CAS  Google Scholar 

  12. Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8:120–126

    Article  PubMed  CAS  Google Scholar 

  13. Li F–F, Yang Z-H, Zeng R, Yang G, Chang X, Yan J-B, Hou Y-L (2011) Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res 50:6496–6502

    Article  CAS  Google Scholar 

  14. Mandal D, Ahmad A, Khan MI, Kumar R (2004) Enantioselective bioreduction of acetophenone and its analogous by the fungus Trichothecium sp. J Mol Catal B Enzym 27:61–63

    Article  CAS  Google Scholar 

  15. Molinari F, Gandolfi R, Villa R, Occhiato EG (1999) Lyophilised yeasts: easy-to-handle biocatalysts for stereoselective reduction of ketones. Tetrahedron Asymmetr 10:3515–3520

    Article  CAS  Google Scholar 

  16. Nakamura K, Yamanaka R, Matsudab T (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetr 14:2659–2681

    Article  CAS  Google Scholar 

  17. Nakamura K, Yamanaka R, Tohi K, Hamada H (2000) Cyanobacterium-catalyzed asymmetric reduction of ketones. Tetrahedron Lett 41:6799–6802

    Article  CAS  Google Scholar 

  18. Nakashimada Y, Kubota H, Takayose A, Kakizono T, Nishio N (2001) Asymmetric reduction of ethyl acetoacetate to ethyl (R)-3-hydroxybutyrate coupled with nitrate reduction by Paracoccus denitrificans. J Biosci Bioeng 91:368–372

    PubMed  CAS  Google Scholar 

  19. Ni Y, Xu J-H (2002) Asymmetric reduction of aryl ketones with a new isolate Rhodotorula sp. AS2.2241. J Mol Catal B Enzym 18:233–241

    Article  CAS  Google Scholar 

  20. Orden AA, Bisogno FR, Giordano OS, Sanz MK (2008) Comparative study in the asymmetric bioreduction of ketones by plant organs and undifferentiated cells. J Mol Catal B Enzym 51:49–55

    Article  CAS  Google Scholar 

  21. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  22. Rodrigues JAR, Moran PJS, Fardelone LC (2004) Recent advances in the biocatalytic asymmetric reduction of acetophenones and α, β-unsaturated carbonyl compounds. Food Technol Biotechnol 42:295–303

    CAS  Google Scholar 

  23. Rouhi AM (2003) Chiral business. Chem Eng News 81:45–56

    Article  Google Scholar 

  24. Sakvi NA, Patil PN, Udupa SR, Banerji A (1995) Biotransformations with Rhizopus arrhizus: preparation of the enantiomers of 1-phenylethanol and 1-(o-, m- and p-methoxyphenyl)ethanols. Tetrahedron Asymmetr 6:2287–2290

    Article  Google Scholar 

  25. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  PubMed  CAS  Google Scholar 

  26. Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J (2011) Prospects for microbial biodiesel production. Biotechnol J 6:277–285

    Article  PubMed  CAS  Google Scholar 

  27. Strauss UT, Felfer U, Faber K (1999) Biocatalytic transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomeric excess. Tetrahedron Asymmetr 10:107–117

    Article  CAS  Google Scholar 

  28. Wohlgemuth R (2010) Biocatalysis—key to sustainable industrial chemistry. Curr Opin Biotechnol 21:713–724

    Article  PubMed  CAS  Google Scholar 

  29. Yadav JS, Nanda S, Reddy PT, Rao AB (2002) Efficient enantioselective reduction of ketones with Daucus carota root. J Org Chem 67:3900–3903

    Article  PubMed  CAS  Google Scholar 

  30. Yang Z-H, Yao S-J, Guan Y-X (2005) A complex process of asymmetric synthesis of β-hydroxy ester by baker’s yeast accompanied by resin adsorption. Ind Eng Chem Res 44:5411–5416

    Article  CAS  Google Scholar 

  31. Yang Z-H, Yao S-J, Lin D-Q (2004) Improving the stereoselectivity of asymmetric reduction of 3-oxo ester to 3-hydroxy ester with pretreatments on bakers’ yeast. Ind Eng Chem Res 43:4871–4875

    Article  CAS  Google Scholar 

  32. Yang Z-H, Zeng R, Chang X, Li X-K, Wang G-H (2008) Toxicity of aromatic ketone to yeast cell and improvement of the asymmetric reduction of aromatic ketone catalyzed by yeast cell with the introduction of resin adsorption. Food Technol Biotechnol 46:322–327

    CAS  Google Scholar 

  33. Yang Z-H, Zeng R, Wang Y, Li W, Lv Z-S (2008) A complex process of the asymmetric reduction of prochiral aromatic ketone by yeast cell with the introduction of an organic solvent as the separation medium. Asia Pac J Chem Eng 3:217–222

    Article  CAS  Google Scholar 

  34. Yang Z-H, Zeng R, Yang G, Wang Y, Li L-Z, Lv Z-S, Yao M, Lai B (2008) Asymmetric reduction of prochiral ketones to chiral alcohols catalyzed by plants tissue. J Ind Microbiol Biotechnol 35:1047–1051

    Article  PubMed  CAS  Google Scholar 

  35. Yang Z-H, Zeng R, Yang G, Wang Y, Li X-K, Lv Z-S, Lai B, Yang S-Q, Liao J-G (2009) Tolerance of immobilized yeast cells in imidazolium-based ionic liquids. Food Technol Biotechnol 47:62–66

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Natural Science Foundation of Hubei Province of China (no. 2008CDB354), Scientific Program of China Hubei Provincial Science & Technology Department (no. 2008BCB203), and the open fund of Research Center of Green Manufacturing and Energy-Saving & Emission Reduction Technology in Wuhan University of Science and Technology (no. B1013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Hua Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, ZH., Luo, L., Chang, X. et al. Production of chiral alcohols from prochiral ketones by microalgal photo-biocatalytic asymmetric reduction reaction. J Ind Microbiol Biotechnol 39, 835–841 (2012). https://doi.org/10.1007/s10295-012-1088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1088-y

Keywords

Navigation