Skip to main content
Log in

Bioproduction of l-2-Aminobutyric Acid by a Newly-Isolated Strain of Aspergillus tamarii ZJUT ZQ013

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

l-2-Aminobutyric acid (l-ABA), an unnatural amino acid, is a key intermediate of several important drugs. Although some methods have been developed to prepare pure chiral l-ABA, there are still many drawbacks, including low catalytic efficiency, cumbersome steps and high cost due to the addition of some expensive catalysts or coenzymes. Herein, with chemical and biological approaches together, we discovered a newly isolated Aspergillus tamarii ZJUT ZQ013 strain containing a microbial lipase which could be employed to resolve racemic methyl N-Boc-2-aminobutyrate to produce l-ABA with high enantioselectivity (e.e.s > 99.9%, E = 257). Moreover, the subsequent gram scale experiment confrimed that A. tamarii ZJUT ZQ013 could be an attractive biocatalyst for the efficient preparation of optically pure acid.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taylor PP, Pantaleone DP, Senkpeil RF, Fotheringham IG (1998) Novel biosynthetic approaches to the production of unnatural amino acids unnatural amino acids using transaminases. Trends Biotechnol 16:412–418

    Article  CAS  Google Scholar 

  2. Zhu L, Tao RS, Wang Y et al (2011) Removal of L-alanine from the production of l-2-aminobutyric acid by introduction of alanine racemase and d-amino acid oxidase. Appl Microbiol Biotechnol 90(3):903–910

    Article  CAS  Google Scholar 

  3. Shin JS, Kim BG (2009) Transaminase-catalyzed asymmetric synthesis of L-2-aminobutyric acid from achiral reactants. Biotechnol Lett 31(10):1595–1599

    Article  CAS  Google Scholar 

  4. Futagawa T, Canvat JP, Cavoy E, et al. Process for the preparation of levetiracetam. US Patent 6,107,492, 22 Aug 2000

  5. Ragonese R, Macka M, Hughes J et al (2002) The use of the Box-Behnken experimental design in the optimisation and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in a pharmaceutical formulation. J Pharm Biomed Anal 27(6):995–1007

    Article  CAS  Google Scholar 

  6. Jefery E A, Meisters A (1978) Electrochemical synthesis of amino acids by reductive amination of keto acids. I. Reduction at mercury electrodes. Aust J Chem 31(1):79–84

    Article  Google Scholar 

  7. Babievskii KK, Belikov VM, Tikhonova NA (1965) Synthesis of D, L—threonine and D, L-2-aminobutyrie acid based on condensations of nitroacetie ester. Russ Chem Bull, 14(1):76–81

    Article  Google Scholar 

  8. Chiyuki F. Process for production of (+)-2-amino-1-butanol. US Patent 3,979,457, 07 Sept 1976

  9. Tao RS, Jiang Y, Zhu FY, Yang S (2014) A one-pot system for production of L-2-aminobutyric acid from L-threonine by L-threonine deaminase and a NADHregeneration system based on L-leucine dehydrogenase and formate dehydrogenase. Biotechnol Lett 36:835–841

    Article  CAS  Google Scholar 

  10. Seo YM, Mathew S, Bea HS, Khang YH, Lee SH, Kim BG, Yun H (2012) Deracemization of unnatural amino acid: homoalanine using D-amino acid oxidase and omega-transaminase. Org Biomol Chem 10(12):2482–2485

    Article  CAS  Google Scholar 

  11. Fotheringham IG, Grinter N, Pantaleone DP, Senkpeil RF, Taylor PP (1999) Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K12. Bioorg Med Chem 7:2209–2213

    Article  CAS  Google Scholar 

  12. Alvaro G, Decor A, Fontana S, Hamprecht D, Large C, Marasco A. Imidazolidinedione derivatives. WO 2011069951 A1, 16 July 2011

  13. Brenner M, Vecchia LL, Leutert T, Seebach D (2003) (4 S)-4- (1-methylethyl)-5,5- diphenyl- 2-oxazolidinone[(2-oxazolidinone,4-(1-methylethyl)-5,5- diphenyl-, (4 S)-)]. Organ Synth 80:57–65.

    Article  CAS  Google Scholar 

  14. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  Google Scholar 

  15. Xu F, Deng G, Cheng S et al (2012) Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans Regia. Molecules 17(7):7810–7823

    Article  CAS  Google Scholar 

  16. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  Google Scholar 

  17. Chen CH, Sih CJ (1989) General aspects and optimization of enantioselective biocatalysis in organic solvents: the use of lipases. Angew Chem Int Ed 28(6):695–707

    Article  Google Scholar 

  18. Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae. Mol Phylogenet Evol 1(1):3–16

    Article  CAS  Google Scholar 

  19. Dosanjh NS, Kaur J (2002) Immobilization, stability and esterification studies of a lipase from a Bacillus sp. Appl Biochem 36(1):7–12

    Article  CAS  Google Scholar 

  20. Dong HP, Wang YJ, Zheng YG (2010) Enantioselective hydrolysis of diethyl 3-hydroxyglutarate to ethyl (S)-3-hydroxyglutarate by immobilized Candida antarctica lipase B. J Mol Catal B Enzym 66(1):90–94

    Article  CAS  Google Scholar 

  21. Long WS, Kow PC, Kamaruddin AH (2005) Comparison of kinetic resolution between two racemic ibuprofen esters in an enzymic membrane reactor. Process Biochem 40(7):2417–2425

    Article  CAS  Google Scholar 

  22. Guo JL, Mu XQ, Xu Y (2010) Integration of newly isolated biocatalyst and resin-based in situ product removal technique for the asymmetric synthesis of (R)-methyl mandelate. Bioproc Biosyst Eng 33(7):797–804

    Article  CAS  Google Scholar 

  23. Zhang Z, Sheng Y, Jiang K (2010) Bio-resolution of glycidyl (o,m,p)-methylphenyl ethers by Bacillus megaterium. Biotechnol Lett 32:513–516

    Article  Google Scholar 

  24. Chang CS, Ho SC (2011) Enantioselective esterification of (R, S)-2-methylalkanoic acid with Carica papaya lipase in organic solvents. Biotechnol Lett 33(11):2247–2253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of China (Nos. 21272212, 21472172) and Zhejiang Natural Science Fund (Nos. LY17B060009, LY12B02018), Project of Science Technology Department of Zhejiang Province (2014C33141), and Project of Department of Science Technology Jinhua City (2013-3-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 188 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Gu, X., Liu, Y. et al. Bioproduction of l-2-Aminobutyric Acid by a Newly-Isolated Strain of Aspergillus tamarii ZJUT ZQ013. Catal Lett 147, 837–844 (2017). https://doi.org/10.1007/s10562-017-1999-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-1999-3

Keywords

Navigation