Skip to main content
Log in

Integration of newly isolated biocatalyst and resin-based in situ product removal technique for the asymmetric synthesis of (R)-methyl mandelate

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The enantioselective reduction of methyl benzoylformate to (R)-methyl mandelate, an important pharmaceutical intermediate and a versatile resolving agent, was investigated in this study. After minimizing the reaction-specific constraints (constraints dependent on the nature of the substrate and product) by preliminary selection of the reaction parameters, an effective whole cell biocatalyst (Saccharomyces cerevisiae AS2.1392) was obtained by simple screening procedures. Under further optimized conditions, a product concentration of 103 mmol L−1 could be attained within 5 h with a yield of 85.8% and an enantiometric excess of 95.4%, indicating S. cerevisiae AS2.1392 an efficient biocatalyst for the asymmetric synthesis of (R)-methyl mandelate. Furthermore, resin-based in situ product removal (ISPR) technique was applied to alleviate the substrate and product inhibition or toxicity to the whole cells. The integration of newly isolated biocatalyst and proper ISPR technique provides a practical route for the preparation of optically active pharmaceutical intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824

    Article  CAS  Google Scholar 

  2. Coppola GM, Schuster HF (2003) Mandelic acid. In: Walter G (ed) Alpha-hydroxy acids in enantioselective syntheses, 2nd edn. Wiley, New York, pp 137–165

    Google Scholar 

  3. Furlenmeier A, Quitt P, Vogler K, Lanz P (1976) 6-Acyl derivatives of aminopenicillanic acid. US Patent 3,957,758

  4. Bichel H, Kocsis K, Peter H (1978) Cephalosporins having an alpha-acyloxyacetic acid side chain. US Patent 4,067,979

  5. Surivet JP, Vatele JM (1999) Total synthesis of antitumor Goniothalamus styryllactones. Tetrahedron 55:13011–13028

    Article  CAS  Google Scholar 

  6. Mills J, Schmiegel KK, Shaw WN (1983) Phenethanolamines, compositions containing the same, and method for effecting weight control. US Patent 4,391,826

  7. Kinbara K, Sakai K, Hashimoto Y, Nohira H, Saigo K (1996) Design of resolving reagents: p-substituted mandelic acids as resolving reagents for 1-arylalkylamines. Tetrahedron Asymmetry 7:1539–1542

    Article  CAS  Google Scholar 

  8. Kesslin G, Kelly KW (1982) Resolution of racemic mandelic acid. US Patent 4,322,548

  9. Yang JW, List B (2006) Catalytic asymmetric transfer hydrogenation of alpha-ketoesters with Hantzsch esters. Org Lett 8:5653–5655

    Article  CAS  Google Scholar 

  10. Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299:1694–1697

    Article  CAS  Google Scholar 

  11. Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73

    Article  CAS  Google Scholar 

  12. Strauss UT, Faber K (1999) Deracemization of (±)-mandelic acid using a lipase-mandelate racemase two-enzyme system. Tetrahedron Asymmetry 10:4079–4081

    Article  CAS  Google Scholar 

  13. Groger H (2001) Enzymatic routes to enantiomerically pure aromatic alpha-hydroxy carboxylic acids: A further example for the diversity of biocatalysis. Adv Synth Catal 343:547–558

    Article  CAS  Google Scholar 

  14. He YC, Xu JH, Pan J, Ouyang LM, Xu Y (2008) Preparation of (R)-(−)-mandelic acid and its derivatives from racemates by enantioselective degradation with a newly isolated bacterial strain Alcaligenes sp. ECU0401. Bioprocess Biosyst Eng 31:445–451

    Article  CAS  Google Scholar 

  15. Nakamura K, Yamanaka R, Matsuda T, Harada T (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 14:2659–2681

    Article  CAS  Google Scholar 

  16. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  Google Scholar 

  17. Kayser MM, Mihovilovic MD, Kearns J, Feicht A, Stewart JD (1999) Baker’s yeast-mediated reductions of alpha-keto esters and an alpha-keto-beta-lactam. Two routes to the paclitaxel side chain. J Org Chem 64:6603–6608

    Article  CAS  Google Scholar 

  18. Milagre HMS, Milagre CDF, Moran PJS, Santana MHA, Rodrigues JAR (2005) Reduction of ethyl benzoylformate mediated by Saccharomyces cerevisiae entrapped in alginate fibers with double gel layers in a continuously operated reactor. Enzyme Microb Technol 37:121–125

    Article  CAS  Google Scholar 

  19. Kratzer R, Egger S, Nidetzky B (2008) Integration of enzyme, strain and reaction engineering to overcome limitations of baker’s yeast in the asymmetric reduction of alpha-keto esters. Biotechnol Bioeng 101:1094–1101

    Article  CAS  Google Scholar 

  20. Chen YZ, Xu JG, Xu XY, Xia Y, Lin H, Xia SW, Wang LX (2007) Enantiocomplementary preparation of (S)- and (R)-mandelic acid derivatives via alpha-hydroxylation of 2-arylacetic acid derivatives and reduction of alpha-ketoester using microbial whole cells. Tetrahedron Asymmetry 18:2537–2540

    Article  CAS  Google Scholar 

  21. He CM, Chang DL, Zhang J (2008) Asymmetric reduction of substituted alpha- and beta-ketoesters by Bacillus pumilus Phe-C3. Tetrahedron Asymmetry 19:1347–1351

    Article  CAS  Google Scholar 

  22. Ema T, Ide S, Okita N, Sakai T (2008) Highly efficient chemoenzymatic synthesis of methyl (R)-o-chloromandelate, a key intermediate for clopidogrel, via asymmetric reduction with recombinant Escherichia coli. Adv Synth Catal 350:2039–2044

    Article  CAS  Google Scholar 

  23. Kratzer R, Pukl M, Egger S, Nidetzky B (2008) Whole-cell bioreduction of aromatic alpha-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli. Microb Cell Fact 7:12

    Article  Google Scholar 

  24. Hilker I, Gutierrez MC, Furstoss R, Ward J, Wohlgemuth R, Alphand V (2008) Preparative scale Baeyer–Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process. Nat Protoc 3:546–554

    Article  CAS  Google Scholar 

  25. Xu MW, Mu XQ, Xu Y (2009) Enhancement of substrate concentration in microbial stereoinversion through one-pot oxidation and reduction by aqueous two-phase system. Bioprocess Biosyst Eng. doi:10.1007/s00449-009-0334-9

  26. Kansal H, Banerjee UC (2009) Enhancing the biocatalytic potential of carbonyl reductase of Candida viswanathii using aqueous-organic solvent system. Bioresour Technol 100:1041–1047

    Article  CAS  Google Scholar 

  27. Burton SG, Cowan DA, Woodley JM (2002) The search for the ideal biocatalyst. Nat Biotechnol 20:37–45

    Article  CAS  Google Scholar 

  28. Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell Fact 7:1–49

    Article  Google Scholar 

  29. Phillips RS (1996) Temperature modulation of the stereochemistry of enzymatic catalysis: Prospects for exploitation. Trends Biotechnol 14:13–16

    Article  CAS  Google Scholar 

  30. Sakai T (2004) ‘Low-temperature method’ for a dramatic improvement in enantioselectivity in lipase-catalyzed reactions. Tetrahedron Asymmetry 15:2749–2756

    Article  CAS  Google Scholar 

  31. Leon R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23:483–500

    Article  CAS  Google Scholar 

  32. Chen Y, Lin H, Xu X, Xia S, Wang L (2008) Preparation the key intermediate of angiotensin-converting enzyme (ACE) inhibitors: High enantioselective production of ethyl (R)-2-hydroxy-4-phenylbutyrate with Candida boidinii CIOC21. Adv Synth Catal 350:426–430

    Article  CAS  Google Scholar 

  33. Goldberg K, Schroer K, Lutz S, Liese A (2007) Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions. Appl Microbiol Biotechnol 76:249–255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged the financial support of this work by the National Key Basic Research and Development Program of China (973 program) (2009CB724706), the Hi-Tech Research and Development Program of China (863 Program No. 2007AA02Z226) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT0532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, JL., Mu, XQ. & Xu, Y. Integration of newly isolated biocatalyst and resin-based in situ product removal technique for the asymmetric synthesis of (R)-methyl mandelate. Bioprocess Biosyst Eng 33, 797–804 (2010). https://doi.org/10.1007/s00449-009-0401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0401-2

Keywords

Navigation